DOI QR코드

DOI QR Code

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao (School of Transportation Engineering, East China Jiaotong University) ;
  • Xu Shanhua (School of Civil Engineering, Xi'an University of Architecture & Technology) ;
  • Hu WeiCheng (School of Transportation Engineering, East China Jiaotong University) ;
  • Chen HuaPeng (School of Transportation Engineering, East China Jiaotong University) ;
  • Li AnBang (School of Civil Engineering, Xi'an University of Architecture & Technology) ;
  • Zhang ZongXing (Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, China University of Mining & Technology)
  • Received : 2022.12.30
  • Accepted : 2023.05.17
  • Published : 2023.07.10

Abstract

Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Keywords

Acknowledgement

This work was supported by the Jiangxi Provincial Natural Science Foundation with Grant No. 20224BAB214067, the Science and Technology Research Project of Jiangxi Provincial Department of Education with Grant No. GJJ2200664, the National Nature Foundation of China with Grant No 52178165, No 52208168 and the Key Project for Scientific and Technological Cooperation Scheme of Jiangxi Province with Grant No. 20212BDH80022.

References

  1. Adany, S. and Schafer, B.W. (2006), "Buckling mode decomposition of single-branched open cross-section members via finite strip method: derivation", Thin-Walled Struct, 44(5), 563-584. https://doi.org/10.1016/j.tws.2006.03.013.
  2. Adany, S. and Schafer, B.W. (2008), "A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method", J. Contr. Steel Res, 64(1), 12-29. https://doi.org/10.1016/j.jcsr.2007.04.004.
  3. Ananthi, G., Roy, K., Chen, B. and Lim, J.B.P. (2019), "Testing, simulation and design of back-to-back built-up cold-formed steel unequal angle sections under axial compression", Steel. Comp. Struct, 33(4), 595-614. https://doi.org/10.12989/scs.2019.33.4.595.
  4. Casafont, M., Marimon, F., Pastor, M. and Ferrer, M. (2011), "Linear buckling analysis of thin-walled members combining the generalised beam theory and the finite element method", Comput. Struct, 89(21-22), 1982-2000. https://doi.org/10.1016/j.compstruc.2011.05.016.
  5. Cheng, J. (2001). Stability Theory and Design of Steel Structures. Science Press, China, Beijing.
  6. Cheng, J. (2003), "Direct strength method for the design of cold-formed lipped channel members", Prog. Steel Build. Struct, 5(4), 5-13.
  7. Feng, L., He, J., Hu, L., Shi, H., Yu, C., Wang, S. and Yang, S. (2020), "A parametric study on effects of pitting corrosion on steel plate's ultimate strength", Appl. Ocean Res, 9, 102026. https://doi.org/10.1016/j.apor.2019.102026.
  8. Garbatov, Y. and Soares, C.G. (2008), "Corrosion wastage modeling of deteriorated ship Structures", Int. Shipbuild. Prog, 55, 109-125.
  9. Garbatov, Y. and Soares, C.G. (2018), "Spatial corrosion wastage modeling of steel plates exposed to marine environments", J. Offshore Mech. Arct, 141(3), 031602. https://doi.org/10.1115/1.4041991.
  10. Gb/T 10125 (2012), Corrosion Tests in Artificial Atmospheres-Salt Spray Tests, Standards Press of China, China, Beijing.
  11. Gb/T 24517 (2009), Corrosion of Metals and Alloys, Outdoors Exposure Test Methods for Periodic Water Spray, Standards Press of China, China, Beijing.
  12. Leach, P. and Davies, J.M. (1996), "An experimental verification of the generalized beam theory applied to interactive buckling problems", Thin-Walled Struct, 25(1), 61-79. https://doi.org/10.1016/0263-8231(95)00031-3.
  13. Mateus, A. (1998), "On the post-buckling of corroded steel plates used in marine structures", Trans. RINA, 140, 165-83.
  14. Melchers, R.E., Ahammed, M., Jeffrey, R. and Simundic, G. (2010), "Statistical characterization of surfaces of corroded steel plates", Mar. Struct, 23(3), 274-287. https://doi.org/10.1016/j.marstruc.2010.07.002
  15. Moen, C.D. (2009), Direct Strength Design of Cold-Formed Steel Members with Perforations, Ph.D. Dissertation, Johns Hopkins University, Washington.
  16. Moen, C.D. and Schafer, B.W. (2009), "Elastic buckling of cold-formed steel columns and beams with holes", Eng. Struct, 31(12), 2812-2824. https://doi.org/10.1016/j.engstruct.2009.07.007.
  17. Moen, C.D. and Schafer, B.W. (2009), "Elastic buckling of thin plates with holes in compression or bending", Thin-Walled Struct, 47(12), 1597-1607. https://doi.org/10.1016/j.tws.2009.05.001.
  18. Nakai, T., Matsushita, H. and Yamamoto, N. (2006), "Effect of pitting corrosion on the ultimate strength of steel plates subjected to in-plane compression and bending", J. Mar. Sci. Technol, 11(1), 52-64. https://doi.org/10.1007/s00773-005-0203-4.
  19. Nakai, T., Matsushita, H., Yamamoto, N. and Arai, H. (2004), "Effect of pitting corrosion on local strength of hold frames of bulk carriers (1st report)", Mar. Struct, 17(5), 403-432. https://doi.org/10.1016/j.marstruc.2004.10.001.
  20. Nie, B., Xu, S., Chen, H. and Wang, Y. (2023), "Effect of corrosion on the buckling behaviour of cold-formed steel channel section columns under axial compression", Arch. Civ. Mech. Eng, 23(2), 70. https://doi.org/10.1007/s43452-023-00615-9.
  21. Nie, B., Xu, S., Yu, J. and Zhang, H. (2019), "Experimental investigation of mechanical properties of corroded cold-formed steels", J. Contr. Steel Res, 162, 105706. https://doi.org/10.1016/j.jcsr.2019.105706.
  22. Nie, B., Xu, S., Zhang, H. and Zhang, Z. (2020), "Experimental and numerical studies on the behaviour of corroded cold-formed steel columns", Steel Comp. Struct, 35(5), 611-625. https://doi.org/10.12989/scs.2020.35.5.611.
  23. Nie, B., Xu, S., Zhang, Z. and Gu, R. (2020), "Experimental investigation on corroded cold-formed steel beam-columns under compression and major axis bending", J. Contr. Steel Res, 169, 106026. https://doi.org/10.1016/j.jcsr.2020.106026.
  24. Nie, B., Xu, S., Zhang, Z. and Li, A. (2021), "Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections", J. Build. Eng, 10, 102786. https://doi.org/10.1016/j.jobe.2021.102786.
  25. Paik, J.K., Lee, J.M. and Kom, J. (2003), "Ultimate compressive strength of plate elements with pit corrosion wastage", J. Eng. Marit. Environ, 217(4), 185-200. https://doi.org/10.1177/147509020321700402
  26. Paik, J.K., Lee, J.M. and Kom, J. (2004), "Ultimate shear strength of plate elements with pit corrosion wastage", Thin-Walled Struct, 42(8), 1161-1176. https://doi.org/10.1016/j.tws.2004.03.024.
  27. Paik, J.K., Lee, J.M., Wang, J.S. and Park, Y. (2003), "A time-dependent corrosion wastage model for the structures of single and double-hull tankers and FSOs and FPSOs", Mar. Technol, 40(3), 201-217. https://doi.org/10.1080/10641190390266525.
  28. Rahbar-Ranji, A. (2012), "Ultimate strength of corroded steel plates with irregular surfaces under in-plane compression", Ocean Eng, 54, 261-269. https://doi.org/10.1016/j.oceaneng.2012.07.030.
  29. Schardt, R. (1994), "Generalized beam theory-an adequate method for coupled stability problems", Thin-Walled Struct, 19(2-4), 161-180. https://doi.org/10.1016/0263-8231(94)90027-2.
  30. Silvestre, N. and Camotim, D. (2003), "Nonlinear generalized beam theory for cold-formed steel members", Int. J. Struct. Stab, Dyn., 3(4), 461-490. https://doi.org/10.1142/S0219455403001002.
  31. Soares, C.G. (1988), Design equation for the compressive strength of unstiffened plate elements with initial imperfections, J. Contr. Steel Res, 9(4), 287-310. https://doi.org/10.1016/0143-974X(88)90065-X.
  32. Soares, C.G. and Garbatov, Y. (1996), "Reliability of maintained ship hulls subjected to corrosion", J. Ship Res, 40(3), 235-243. https://doi.org/10.5957/jsr.1996.40.3.235
  33. Tao, Y. (2012), Study on Stability Behaviour of Cold-Formed Thin-Walled Steel Lipped Channel Columns with V-shaped Stiffened Web Under Axial Load, Ph.D. Dissertation, Harbin Institute of Technology, Harbin.
  34. Tao, Y. and Wang, F. (2015), "Elastic local buckling analysis of cold-formed thin-walled steel lipped channel column with holes", Build. Struct, 45(17), 59-62. https://doi.org/10.19701/j.jzjg.2015.17.013.
  35. Teixeira, A. and Guedes, S.C. (2008), "Ultimate strength of plates with random fields of corrosion", Struct. Infrastruct. Eng, 4(5), 363-370. https://doi.org/10.1080/15732470701270066.
  36. Teng, J.G., Yao J. and Zhao, Y. (2003), "Distortional buckling of channel beam-columns", Thin-Walled Struct, 41(7), 595-617. https://doi.org/110.1016/S0263-8231(03)00007-7.
  37. Wang, Y., Shi, T., Nie, B., Wang, H. and Xu, S. (2021), "Seismic performance of steel columns corroded in general atmosphere". Steel. Comp. Struct, 40(2), 217-241. https://doi.org/10.12989/scs.2021.40.2.217.
  38. Wang, Y., Zhou, X., Wang, H., Kong, D. and Xu, S. (2022), "Stochastic constitutive model of structural steel based on random field of corrosion depth", Case Stud. Construct. Mater. 16: e00972. https://doi.org/10.1016/j.cscm.2022.e00972.
  39. Xu, S.H., Zhang, Z.X., Li, R. and Wang, H. (2019), "Effect of cleaned corrosion surface topography on mechanical properties of cold-formed thin-walled steel", Construct. Build. Mater, 222, 1-14. https://doi.org/10.1016/j.conbuildmat.2019.06.130.
  40. Ye, J., Hajirasouliha, I., Becque, J. and Pilakoutas, K. (2016), "Development of more efficient cold-formed steel channel sections in bending", Thin-Walled Struct, 101(4), 1-13. https://doi.org/10.1016/j.tws.2015.12.021.
  41. Zhang, Z., Xu, S. and Li, R. (2020), "Comparative investigation of the effect of corrosion on the mechanical properties of different parts of thin-walled steel", Thin-Walled Struct, 146, 26-40. https://doi.org/10.1016/j.tws.2019.106450.