Browse > Article
http://dx.doi.org/10.1016/j.net.2021.12.013

Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry  

Rahmat, Muhammad Abdullah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Ismail, Aznan Fazli (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Rodzi, Nursyamimi Diyana (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Aziman, Eli Syafiqah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Idris, Wan Mohd Razi (Water Analysis, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Lihan, Tukimat (Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
Publication Information
Nuclear Engineering and Technology / v.54, no.6, 2022 , pp. 2230-2243 More about this Journal
Abstract
The tin tailing processing industry in Malaysia has operated with minimal regard and awareness for material management and working environment safety, impacting the environment and workers in aspects of radiation and heavy metal exposure. RIA was conducted where environmental samples were analyzed, revealing concentrations of 226Ra, 232Th and 40K between the range of 0.1-10.0, 0.0-25.7, and 0.1-5.8 Bq/g respectively, resulting in the AED exceeding UNCEAR recommended value and regulation limit enforced by AELB (1 mSv/y). Raeq calculated indicates that samples collected pose a significant threat to human health from gamma-ray exposure. Assessment of heavy metal content via pollution indices of soil and sediment showed significant contamination and enrichment from processing activities conducted. As and Fe were two of the highest metals exposed both via soil ingestion with an average of 4.6 × 10-3 mg/kg-day and 1.4 × 10-4 mg/kg-day, and dermal contact with an average of 5.6 × 10-4 mg/kg-day and 6.0 × 10-4. mg/kg-day respectively. Exposure via accidental ingestion of soil and sediment could potentially cause adverse non-carcinogenic and carcinogenic health effect towards workers in the industry. Correlation analysis indicates the presence of a relationship between the concentration of NORM and trace elements.
Keywords
Tin tailing; NORM; Heavy metals; Radiological Impact assessment; Mining;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M.S.M. Sanusi, A.T. Ramli, S. Hashim, M.H. Lee, Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts, Ecotoxicol. Environ. Saf. 208 (2021) 111727, https://doi.org/10.1016/j.ecoenv.2020.111727.   DOI
2 Z. Rahmat, I. Bahari, M.S. Yasir, R. Yahaya, A.A. Majid, Statistical prediction of environmental gamma radiation doses, in: Perak 39, 2010, pp. 599-605. Malaysia, Sains Malaysiana.
3 E.S. Aziman, A.F. Ismail, Frontier looking of rare-earth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium, Prog. Nucl. Energy 128 (2020) 103471, https://doi.org/10.1016/j.pnucene.2020.103471.   DOI
4 H.T. Abba, M.A. Saleh, W.M.S.W. Hassan, A.S. Aliyu, A.T. Ramli, Mapping of natural gamma radiation (NGR) dose rate distribution in tin mining areas of Jos Plateau, Nigeria, Environ. Earth Sci. 76 (2017) 1-9, https://doi.org/10.1007/s12665-017-6534-8.   DOI
5 Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan, L. Huang, A review of soil heavy metal pollution from mines in China: pollution and health risk assessment, Sci. Total Environ. 468-469 (2014) 843-853, https://doi.org/10.1016/j.scitotenv.2013.08.090.   DOI
6 I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, M.S. Elias, Determination of the elemental concentration of uranium and thorium in the products and byproducts of amang tin tailings process, AIP Conf. Proc. 1799 (2017), https://doi.org/10.1063/1.4972913.   DOI
7 Unscear, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, 2000.
8 A. Gupta, D.S. Yan, Gravity separation, in: Miner. Process. Des. Oper., Elsevier, 2016, pp. 563-628, https://doi.org/10.1016/b978-0-444-63589-1.00016-2.   DOI
9 Y.A. Abdel-Razek, O.A. Desouky, A. Elshenawy, A.S. Nasr, H.S. Mohmmed, A.A. Elsayed, et al., Assessment of the radiation exposures during separation of rare earth elements from monazite mineral, Int. J. Adv. Res. 4 (2016) 144-149, https://doi.org/10.21474/IJAR01.   DOI
10 O. Gunawan, E. Pudjadi, M. Musbach, Wahyudi, technologically enchanced naturally occurring radioactive materials (TENORM) analysis of Bangka tin slag, J. Phys. Conf. Ser. 1198 (2) (2019) 1-7, https://doi.org/10.1088/1742-6596/1198/2/022006.   DOI
11 Y. Hamzah, M. Mardhiansyah, L.N. Firdaus, Characterization of rare earth elements in tailing of ex-tin mining Sands from Singkep Island, Indonesia, Aceh Int. J. Sci. Technol. 7 (2018) 131-137, https://doi.org/10.13170/aijst.7.2.8622.   DOI
12 U. Arisekar, R.J. Shakila, R. Shalini, G. Jeyasekaran, Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu, Mar. Pollut. Bull. 159 (2020) 111496, https://doi.org/10.1016/j.marpolbul.2020.111496.   DOI
13 S. Abdullahi, A.F. Ismail, S. Samat, Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia, Nucl. Eng. Technol. 51 (2019) 325-336, https://doi.org/10.1016/j.net.2018.09.017.   DOI
14 ICRP, Recommendations of the International Commission on Radiological Protection, 60, ICRP Publ, 1990, p. 21, 1990.
15 R. Irzon, I. Syafri, J. Hutabarat, P. Sendjaja, S. Permanadewi, Heavy metals content and pollution in tin tailings from Singkep Island, Riau, Indonesia, Sains Malays. 47 (2018) 2609-2616, https://doi.org/10.17576/jsm-2018-4711-03.   DOI
16 D.E. Andini, F.I.P. Sari, Study of rare earth elements and heavy metals in tin tailing from mining activities on North Bangka Island, J. Phys. Conf. Ser. 1517 (2020), https://doi.org/10.1088/1742-6596/1517/1/012084.   DOI
17 AELB, Peraturan-Peraturan Pelesenan Tenaga Atom, Perlindungan Sinaran Keselamatan Asas), 2010, 2010.
18 AELB, Perintah Perlesenan Tenaga Atom (Kilang Amang Kecil) (Pengecualian) 1994, 1984.
19 M.Y. Azmi, R. Junidah, A. Siti Mariam, M.Y. Safiah, S. Fatimah, A.K. Norimah, B.K. Poh, M. Kandiah, M.S. Zalilah, W.M. Wan Abdul Manan, M.D. Siti Haslinda, A. Tahir, Body mass index (BMI) of adults: findings of the Malaysian adult nutrition survey (MANS), Malays. J. Nutr. 15 (2009) 97-119.
20 USEPA, Risk Assessment Guidance for Superfund, Volume I human health evaluation manual (Part A) I (1989) 289. EPA/540/1-89/002.
21 Aelb, Kajian Semula Pengecualian Ke Atas Kilang Amang Kecil, 2020.
22 H.T.T. Ngo, P. Watchalayann, D.B. Nguyen, H.N. Doan, L. Liang, Environmental health risk assessment of heavy metal exposure among children Living in an informal E-waste processing village in vietnam, Sci. Total Environ. (2020) 142982, https://doi.org/10.1016/j.scitotenv.2020.142982.   DOI
23 A.H.J.M. Salehuddin, E.S. Aziman, C.N.A.C.Z. Bahri, M.A.R.A. Affendi, W.M.R. Idris, A.F. Ismail, Effectiveness study of thorium extraction from hydrochloric acid using di (2-Ethylhexyl) phosphoric acid (D 2 EHPA), Sains Malays. 48 (2019) 419-424, https://doi.org/10.17576/jsm-2019-4802-20.   DOI
24 M.I. Abdul Adziz, K.S. Khoo, An assessment of absorbed dose and radiation hazard index from soil around repository facility at Bukit Kledang, Perak, Malaysia, IOP Conf. Ser. Mater. Sci. Eng. 298 (2018), https://doi.org/10.1088/1757-899X/298/1/012001.   DOI
25 B. Ismail, N. Mohsen, P. Abdullah, Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry, J. Environ. Radioact. 95 (2007) 161-170, https://doi.org/10.1016/j.jenvrad.2007.02.009.   DOI
26 P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Mol. Clin. Environ. Toxicol. 101 (2012) 133-164, https://doi.org/10.1007/978-3-7643-8340-4_6.   DOI
27 A.R. Zulfahmi, W.Y.W. Zuhairi, M.T Raihan, A.R. Sahibin, I.W.M Razi, L. Tukimat, Z.S.N. Syakireen Z.S.N.S.N., A. Noorulakma, Influence of Amang (Tin Tailing) on Geotechnical Properties of Clay Soil 3rd, 41, Sains Malaysiana, 2012.
28 Z. Hamzah, M. Ahmad, A. Saat, DETERMINATION of HEAVY MINERALS IN "AMANG" from KAMPUNG GAJAH EX-MINING AREA (Penentuan Mineral Berat Dalam "Amang" Dari Kawasan Bekas Lombong Kampung Gajah), 2009.
29 J.R. Cooper, K. Randle, R.S. Sokhi, Radioactive Releases in the Environment: Impact and Assessment, 2003.
30 S. Abdullahi, A.F. Ismail, S. Samat, Radiological characterization of building materials used in Malaysia and assessment of external and internal doses, Nucl. Sci. Tech. 30 (2019), https://doi.org/10.1007/s41365-019-0569-3.   DOI
31 Department of Environment Malaysia, Contaminated Land Management and Control Guidelines No . 1 : Malaysian Recommended Site Screening Levels for Contaminated Land, 2009.
32 M. Nasirian, B. Ismail, P. Abdullah, A. Jaafar, Gamma hazards and risk associated with norm in sediment from amang processing recycling ponds, Malaysian J. Anal. Sci. 11 (2007) 314-323.
33 N.K. Sapari, H. Zabidi, K.S. Ariffin, Geochemical prospecting of tin mineralization zone at Belukar Semang prospect, Gerik, Perak, Procedia Chem. 19 (2016) 729-736, https://doi.org/10.1016/j.proche.2016.03.077.   DOI
34 I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, M.S. Elias, Gross alpha and gross beta activity in the products and by-product of amang tin tailings process, J. Radioanal. Nucl. Chem. 303 (2015) 1877-1882, https://doi.org/10.1007/s10967-014-3708-7.   DOI
35 C.N.A. Che Zainul Bahri, A.F. Ismail, A. Ab Majid, Synthesis of thorium tetrafluoride (ThF 4 ) by ammonium hydrogen difluoride (NH 4 HF 2 ), Nucl. Eng. Technol. 51 (2019) 792-799, https://doi.org/10.1016/j.net.2018.12.023.   DOI
36 S. Lubis, M. Shibdawa, A. Haruna, Determination of natural radioactive elements in vegetables irrigated with water from tin mining ponds around Dorowa in Barkin Ladi, plateau state, Nigeria, Sci. Forum (Journal Pure Appl. Sci. 16 (2019) 1, https://doi.org/10.5455/sf.16982.   DOI
37 S. Abdullahi, A.F. Ismail, M.S. Yasir, Radioactive investigation of Malaysia's building materials containing NORM and potential radiological risks analysis using RESRAD-BUILD computer code, Int. J. Environ. Anal. Chem. (2020) 1-13, https://doi.org/10.1080/03067319.2020.1746778.   DOI
38 M. Omar, I. Sulaiman, A. Hassan, A.K. Wood, Radiation dose assessment at amang processing plants in Malaysia, Radiat. Protect. Dosim. 124 (2007) 400-406, https://doi.org/10.1093/rpd/ncm212.   DOI
39 F.A. Affandi, M.Y. Ishak, Heavy metal concentrations in tin mine effluents in Kepayang river, Perak, Malaysia, J. Phys. Sci. 29 (2018) 81-86.   DOI
40 V.F.E. Antony, M. Edraki, Environmental geochemistry of the abandoned mamut copper mine (Sabah) Malaysia, Environ. Geochem. Health 40 (2018) 189-207, https://doi.org/10.1007/s10653-016-9892-3.   DOI
41 L.J. Looi, A.Z. Aris, F.M. Yusoff, N.M. Isa, H. Haris, Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments, Environ. Geochem. Health 41 (2019) 27-42, https://doi.org/10.1007/s10653-018-0149-1.   DOI
42 S. Bello, B.G. Muhammad, Evaluation of heavy metal pollution in soils of Dana Steel limited dumpsite, Katsina State, Nigeria using Pollution load and degree of contamination indices, Am. J. Eng. Res. 4 (2015) 161-169.
43 J.B. Kowalska, R. Mazurek, M. Gasiorek, T. Zaleski, Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review, Environ. Geochem. Health 40 (2018) 2395-2420, https://doi.org/10.1007/s10653-018-0106-z.   DOI
44 R.N. Adiputra, F. Agustin, A. Sulastri, C.I. Abdullah, I. Nugraha, R. Andriansyah, M. Hadiprayitno, The tin ore separation process and optimizing the rare earth mineral (monazite) as a by-product of tin mining in East Belitung Regency, in: IOP Conf. Ser. Earth Environ. Sci., Institute of Physics Publishing, 2020, https://doi.org/10.1088/1755-1315/413/1/012004.   DOI
45 N.D. Pusporini, Suyanti, R.A. Amiliana, H. Poernomo, Processing and refining of tin tailing mining, J. Phys. Conf. Ser. 1436 (2020), https://doi.org/10.1088/1742-6596/1436/1/012136.   DOI
46 M. Hashim, N. Nayan, Y. Saleh, H. Mahat, Z. Mat Said, W. Fhei Shiang, Water quality assessment of former tin mining lakes for recreational purposes in Ipoh city, Perak, Malaysia, Indones. J. Geogr. 50 (2018) 25-33, https://doi.org/10.22146/ijg.15665.   DOI
47 L. Hakanson, An ecological risk index for aquatic pollution control.a sedimentological approach, Water Res. 14 (1980) 975-1001, https://doi.org/10.1016/0043-1354(80)90143-8.   DOI
48 USEPA, Exposure Factors Handbook; EPA, Environmental Protection Agency, Natl. Cent. Environ. Assess. Off. Res. Dev. Expo. Factors Handb., 1997, 1-1466. c:%5CDocuments and Settings%5Cturner_j%5CDesktop%5CJT_Biblioscape_8_111003%5CJT_Bib8_111003%5Cattachments%5Cefh-complete.pdf.
49 P. Goker, P. Goker, M. Gulhal Bozkir, Determination of hand and palm surface areas as a percentage of body surface area in Turkish young adults, Trauma Emerg. Care. 2 (2017) 1-4, https://doi.org/10.15761/tec.1000135.   DOI
50 USEPA, Recommended Default Exposure Factors, 2014. https://rais.ornl.gov/documents/EFH_Table.pdf.
51 K. Kim, S. Jeong, Separation of monazite from placer deposit by magnetic separation, Minerals 9 (2019), https://doi.org/10.3390/min9030149.   DOI
52 Ministerie Van Volkshuisvesting; Ruimtelijke Ordening En Milieu, Dutch Target and Intervention Values; 2000 (The New Dutch List), Netherlands Gov, 2000, pp. 1-12. Gaz. 2000, http://goo.gl/xXY1nS.
53 T.O. Kolawole, A.S. Olatunji, M.T. Jimoh, O.T. Fajemila, Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria, J. Heal. Pollut. 8 (2018), https://doi.org/10.5696/2156-9614-8.19.180906.   DOI
54 N.F. Soliman, S.M. Nasr, M.A. Okbah, Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt, J. Environ. Heal. Sci. Eng. 13 (2015), https://doi.org/10.1186/s40201-015-0223-x.   DOI
55 F. Zeng, W. Wei, M. Li, R. Huang, F. Yang, Y. Duan, Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks, Int. J. Environ. Res. Publ. Health 12 (2015) 15584-15593, https://doi.org/10.3390/ijerph121215005.   DOI
56 M. Atipo, O. Olarinoye, B. Awojoyogbe, M. Kolo, High terrestrial radiation level in an active tin-mine at Jos South , Nigeria high terrestrial radiation level in an active tin-mine at Jos South , Nigeria, J. Appl. Sci. Environ. Manag. 24 (3) (2020) 435-442, https://doi.org/10.4314/jasem.v24i3.6.   DOI
57 E.S. Aziman, A.H.J. Mohd Salehuddin, A.F. Ismail, Remediation of thorium (IV) from wastewater: current status and way forward, Separ. Purif. Rev. 50 (2021) 177-202, https://doi.org/10.1080/15422119.2019.1639519.   DOI
58 F.M. Kusin, N.N.M. Azani, S.N.M.S. Hasan, N.A. Sulong, Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment, Catena 165 (2018) 454-464, https://doi.org/10.1016/j.catena.2018.02.029.   DOI
59 A.A. Mohammadi, A. Zarei, S. Majidi, A. Ghaderpoury, Y. Hashempour, M.H. Saghi, A. Alinejad, M. Yousefi, N. Hosseingholizadeh, M. Ghaderpoori, Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran, MethodsX 6 (2019) 1642-1651, https://doi.org/10.1016/j.mex.2019.07.017.   DOI
60 Y.B. Man, X.L. Sun, Y.G. Zhao, B.N. Lopez, S.S. Chung, S.C. Wu, K.C. Cheung, M.H. Wong, Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city, Environ. Int. 36 (2010) 570-576, https://doi.org/10.1016/j.envint.2010.04.014.   DOI
61 A.F. Ismail, K. Rosli, W.M.R. Idris, S.A. Rahim, Determination of natural radionuclides concentrations and radiological hazard index due to application of condisoil® on hibiscus cannabinus (Kenaf) cultivation, Sains Malays. 47 (2018) 893-901, https://doi.org/10.17576/jsm-2018-4705-04.   DOI
62 S. Abdullahi, A.F. Ismail, S.M. Fadzil, Assessment of the long-term possible radiological risk from the use of ceramic tiles in Malaysia, Nucl. Sci. Tech. 6 (2019), https://doi.org/10.1007/s41365-019-0558-6.   DOI
63 S. Abdullahi, A.F. Ismail, S. Samat, Assessment of naturally occurring radionuclides in Malaysia'S building materials, Radiat. Protect. Dosim. 186 (2019) 520-523, https://doi.org/10.1093/rpd/ncz125.   DOI
64 S. Abdullahi, A. Fazli, M.S. Yasir, Radiological hazard analysis of Malaysia ' s ceramic materials using generic and RESRAD - BUILD computer code approach, J. Radioanal. Nucl. Chem. 324 (1) (2020) 301-315, https://doi.org/10.1007/s10967-020-07070-3.   DOI
65 T. Crommentuijn, D. Sijm, J. De Bruijn, M. Van den Hoop, K. Van Leeuwen, E. Van de Plassche, Maximum permissible and negligible concentrations for metals and metalloids in The Netherlands, taking into account background concentrations, J. Environ. Manag. (2000) 121-143, https://doi.org/10.1006/jema.2000.0354.   DOI