• Title/Summary/Keyword: minimum inhibition concentration

Search Result 216, Processing Time 0.026 seconds

Antibacterial Activity of Sea-mustard, Laminaria japonica Extracts on the Cariogenic Bacteria, Streptococcus mutans (충치균 (Streptococcus mutans)에 대한 다시마 추출물의 항균활성)

  • Kim Ji Hoe;Lee Doo Seog;Lim Chi Won;Park Hee Yeon;Park Jeong Heum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.2
    • /
    • pp.191-195
    • /
    • 2002
  • In previous reports the authors have screened the inhibition effects of marine algae extracts on halitosis, and demonstrated that a brown algae, Eisenia bicyclis (' Daehwang') possess not only strong deodorant effect bug also considerable anticariogenic activities. In this study, we screened antibacterial effects of various marine algae, and measured minimum inhibitory concentration (MIC) value of them against mutans streptococci in vitro. Among the 27 species of marine algae, $80\%$ ethanol extract of dried sea-mustard, Laminaria japonica ('Dasima') showed the strongest inhibition activity against Streptococcus mutans KCTC 3300. The extracts of Ulva lactuca ('Galparae'), Codium fragile ('Cheonggak'), Ecklonia cava ('Gamtae'), E. stolonifera ('Gompi') and Undalia Pinnatifida ('Miyeok') showed slightly weaker inhibitory potency than L. japonica. Differences of MIC values in $80\%$ ethanol extract of some species of marine algae were observed depending on test bacterial species, i.e., S. mutans KCTC 3300 or S. sobrinus KCTC 3307. Eighty percent ethanol extract of dried L japonica was fractionated with diethyl ether, chloroform, ethyl acetate, n-buthanol and water successively, The ether-soluble fraction had inhibitory effect on S. mutans KCTC 3300, however the inhibitory effects were not found in the other fractions. The MIC values of $80\%$ ethanol extract and ether fraction were 180 and 105 $\mu$g/mL respectively, while no significant inhibition activity of water-soluble fraction was found even when the fraction was added up to 5,500 $\mu$g/mL.

Screening of Antifungal Activities of Plant Extracts against Phytopathogenic Fungi (식물추출물의 식물병원성 곰팡이 포자에 대한 발아억제 활성)

  • Park, Sang-jo;Rhu, Young Hyun;Bae, Soo Gon;Seo, Dong Hwan
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Plant extracts were screened for antifungal activity against major plant pathogens, Botrytis sp., Collectotrichum sp., Alternaria sp. and Cylindrocarpon sp. using 96-well microdilution method. Among the 662 methanol extracts from 401 plant species, 36 extracts showed complete inhibition of spore germination against at least one of four pathogenic fungi. Extracts of Morus alba twig and Sophora flavescens root showed minimum inhibition concentration (MIC) at $1,250{\mu}g/ml$ against Botrytis sp.. Extracts of Chloranthus japonicus root showed MIC at $1,250{\mu}g/ml$ against Collectotrichum sp.. Extracts of Glycyrrhiza uralensis aerial part, Inula helenium root and Menispermum dauricum root showed MIC between 625 and $1,250{\mu}g/ml$ against Alternaria sp.. G. uralensis aerial part and I. helenium root showed MIC at $1,250{\mu}g/ml$ against Cylindrocarpon sp.. Specifically, the extracts of Agrimonia pilosa root, Angelica tenuissima root, Asarum sieboldii root, Campsis grandifolia leaf and twig, Cnidium officinale root, Dictamnus dasycarpus root, G. uralensis aerial part, I. helenium root and M. alba twig completely inhibited spore germination at lower than $5,000{\mu}g/ml$ against all of four pathogenic fungi. Two methanol extracts from G. uralensis aerial part and M. alba twig may used as a candidate to develop into effective disease management materials in plant cultivation.

EFFECTS OF AMYLASE ON THE DEMINERALIZATION IN HYDROXYAPATITE (Amylase가 Hydroxyapatite 탈회에 미치는 영향)

  • Lee, In-Hwan;Seo, Jeong-Taeg;Choi, Byung-Jai;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.335-351
    • /
    • 1998
  • Salivary proteins which are produced in the saliary acinar cells have been known to be involved in the Calcium and phosphate metabolism. The acquired pellicle resulting from such metabolism is considered as a secondary defence membrane against tooth caries. In this respect, some proteins included in saliva probably play an important role in the prevention of demineralization in enamel. On the other hand, fluoride has long been known to prevent the demineralization of enamel by the inhibition of the growth of Streptococcus mutans(S. mutans) and by the chemical reaction with calcium and phosphate, Therefore, I have examined the roles of amylase and albumin in the demineralization of enamel and compared these preteins with fluoride in terms of anticariogenic effect. 1. The demineralization caused by S. mutans occurred slowly and progressively for the first 60 min, then the rate of demineralization was accelerated afterwards. 2. pH decreased continuously during the entire period of each experiment. 3. The demineralization was significantly inhibited by the preteatment of amylase and fluoride but albumin had little effect on it. 4. An addition of 0.1 mM lactic acid (final concentration 0.1 ${\mu}M$) caused a rapid increase in calcium concentration reaching a maximum within 10 min. 5. pH decreased rapidly by the addition of 0.1 mM lactic acid and reached a minimum within a few seconds followed by an increase in pH. pH reaced a plateu with 10 min. 6. Fluoride, amylase and albumin played little role in the 0.1 mM lactic acid-induced demineralization. 7. A slow infusion of 0.1 M lactic acid at a rate of 5 ${\mu}l/min$ caused a slower increase in calcium concentration compared with the bolus addition of lactic acid. 8. Fluoride had an inhibitory effect on the calcium release caused by slow infusion of lactic acid while amylase and albumin had no effect on it. These results suggest that fluoride inhibits demineralization by protecting the HA from the acid attack whereas amylase has a direct effect on S. mutans to prevent demineralization.

  • PDF

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

Cytotoxicity and antimicrobial effects of the methanolic extract of Sophora flavescens Ait. (IV)

  • Baek, Seung-Hwa;Kang, Kil-Ung;Lee, Jeong-Ho;Park, Nang-Kyu;Chai, Kyu-Yun;You, Il-Soo;Kim, Jong-Soo;Ryu, Do-Gon;Lee, Kang-Min;Yang, Eun-Yeong;Lee, Hyun-Ok
    • Advances in Traditional Medicine
    • /
    • v.1 no.2
    • /
    • pp.45-51
    • /
    • 2000
  • This study was carried out to evaluate cytotoxicity of the methanol extract from Sophora flavescens Ait. against L1210 (lymphocytic leukemia) and $P388D_1$ (lymphoid neoplasma) Cells in vitro. We have determined cytotoxicity by the MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H- tetrazolium bromide) assay. The order of cytotoxicity of Sophora flavescens Ait. extracts against L1210 and $P388D_1$ cells in vitro is as follows: Fr. 4 > Fr. 3 > Fr. 5 > Fr. 2 > Fr. 1. These results suggest that the fraction 4 of the methanol extracts from Sophora flavescens Ait. may be a valuable choice for the development of antitumor agents. In order to develop an antimicrobial agent, dried Sophora flavescens Ait. was extracted with hot methanol, and then antimicrobial activity (MIC test) was investigated. In this study, the fraction 3 of the methanol extracts from the roots of S. flavescens showed strong growth inhibition activity against gram-positive and gram-negative bacteria (MIC, $3.125\;{\mu}g/ml$) such as S. mutans, S. epidermidis and P. putida. These results indicate that fractions 3 and 4 inhibit tumor cells and bacteria.

  • PDF

Antibacterial and phytochemical properties of Aphanamixis polystachya essential oil

  • Rahman, Md. Shahedur;Ahad, Abir;Saha, Subbroto Kumar;Hong, Jongki;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.113-121
    • /
    • 2017
  • Now a day's rise of new antibiotic resistant bacterial strains is a global threat. Ethnic people of India have been employing Aphanamixis polystachya (Wall.) R. Parker wood extract in healing cancerous wounds. The aim of this study was to evaluate the antimicrobial activity and to identify the medicinally potent chemicals in the essential oil extract of A. polystachya. The antibacterial properties of various organic extracts were evaluated against a range of bacteria (gram-positive and gram-negative bacteria) based on the disc diffusion method and GC-MS based analysis for finding active oil extract components. All extracts of A. polystachya leaves showed potential antibacterial activity, notably ethyl acetate, while petroleum ether extracts revealed highly sensitive activity against all tested bacteria (zones of inhibition ranging from 8.83 to 11.23 mm). In addition, the petroleum ether extract had the lowest MIC value (32 to $256{\mu}g/mL$) against E. coli, S. lutea, X. campestris, and B. subtilis bacteria. The major compounds detected in oil [${\beta}$-elemene (16.04 %), ${\beta}$-eudesmol (12.78 %), ${\beta}$-caryophyllene (19.37 %), ${\beta}$-selinene (11.32 %), elemol (5.76 %), and ${\alpha}$-humulene (5.68 %)] are expected to be responsible for the potent antimicrobial activity. The results of this study offer valuable insights into the potent role of A. polystachya essential oil extract in pharmaceutical and antibiotic research.

Antioxidant and Antibacterial Activities of the Byproducts of Abies holophylla Extract (전나무 부산물 추출물의 항산화 및 항박테리아 활성)

  • Seong, Eun Soo;Kim, Soo Kyung;Lee, Jin Won;Choi, Seung Hyuk;Yoo, Ji Hye;Lim, Jung Dae;Na, Jong Kuk;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2018
  • Background: The extract of Abies holophylla is used as an ingredient in cosmetics. This study assessed the antioxidant and antibacterial activities of the material remaining after the extract is used. Methods and Results: The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl benzothiazoline)-6-sulfonic acid (ABTS) radical scavenging abilities were assessed to determined the free radical scavenging activity. The total phenol and flavonoid contents were determined to measure the antioxidant activity. The DPPH and ABTS radical scavenging activities of the resudual extract were higher (95.61 - 99.42% and 74.26 - 77.98% in water extract respectively) than those of the positive control. In 50% EtOH extract, the total phenol content was $389.84mg{\cdot}GAE/m{\ell}$, and the total flavonoid was $0.15mg{\cdot}QE/m{\ell}$. The minimum inhibition concentration degree for antibacterial activity against Staphylococcus aureus was < 8 to < $125{\mu}g/m{\ell}$ compared to that of the positive control in all extracts. The clear zone against S. aureus was found to be $12.2{\pm}3.8mm$. Conclusions: The A. holophylla byproducts were found to have antioxidant and antibacterial activities. Therefore, the materials remaining after the A. holophylla extract is used in cosmetics has potential functional uses.

Study on the Antimicrobial Effects of Citrus Peel by Different Extract Methods (추출방법에 따른 감귤과피 추출물의 항균효과)

  • Jang Se-Young;Choi Hyun-Kyoung;Ha Na-Young;Kim Ok-Mi;Jeong Yong-Jin
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.319-324
    • /
    • 2004
  • The antimicrobial activity of the extract of citrus peel prepared by the method of hot water, ethanol and sugar was examined. The results showed that the extract of citrus peel prepared by hot water or ethanol did not have antimicrobial activity, but the extract by 10$\%$(w/v) sugar revealed the high antimicrobial activity. Extracted in 10%(w/v) sugar solution for 9 days, showed the highest antimicrobial activity against 8 strains of bacteria. The minimum inhibition concentration was found to be 0.5$\%$(v/v) against S. aureus, 1.5$\%$(v/v) against B. subtilis, M. luteus and E. coli, and 2.0$\%$(v/v) against S. mutans. The antimicrobial activity of the citrus peel extract was stable regardless of the treatment at 40 $\~$ 100 $^{\circ}C$C for 20 min and unstable response to the change of pH. The results suggested the development of citrus peel as heat-stable antimicrobial agents.

THE EFFECTS OF HONOKIOL AND MAGNOLOL ON THE ANTIMICROBIAL, BACTERIAL COLLAGENASE ACTIVITY, CYTOTOXICITY AND CYTOKINE PRODUCTION (Magnolol과 Honokiol이 항균, 교원질 분해효소, 세포독성 및 Cytokine생산에 미치는 영향)

  • Jang, Beom-Seok;Son, Seong-Heai;Chung, Chong-Pyoung;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.145-158
    • /
    • 1993
  • The oral microbiota such as P. gingivalis, P. intermedia and A. actinomycetemcomitans play a primary role in the initiation and progression of the periodontal disease. The purpose of this study was to evaluate the antimicrobial effects and inhibitory effects of honokiol and magnolol on the bacterial collagenase activity, cytotoxicity and cytokine production of periodontopathic microorganisms. The antimicrobial activities of honokiol and magnolol was evaluted with minimum inhibition concentration. Honokiol was more active than magnolol, but less than chlorhexidine on antimicrobial activity. The inhibitory effects of magnolol and honokiol on the collagenolytic activity and cytotoxicity were evaluated using a Collagenokit CLN-100 and rapid colorimetric assay (MTT method) for cellular growth and survival of gingival fibroblast and periodontalligament cell and $[^3H]-thymidine$ incorporation for the gingival epithelial cell. The inhibitory effects on the collagenolytic activity was the highest in chlorhexidine, and the lowest in magnolol. Magnolol had the lowest cytotoxic effect and chlorhexidine had the highest. The inhibitory effects on cytokine production was evaluated using $interleukin-1{\beta}$ ELISA kit (Cistron Biotech.), IL-6, $TNF-{\alpha}$ ELISA kit (Genzyme) and inhibitory effects were higher than bacterial LPS and there is no difference among the honokiol, magnolol and chlorhexidine. From these results, the antimicrobial and antienzymatic activities of honokiol and magnolol were seemed to inhibit bacterial growth and enzyme activities with lesser cytotoxic activities. Therefore, it was suggested that honokiol and magnolol are very effective antimicrobial agents on periodontal pathogens.

  • PDF

Antimicrobial activity of the hexane extract of Stachys sieboldii MIQ leaf (초석잠의 잎 추출물의 항균 활성)

  • 류병호;박법규
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • The present study was carried out for research and development of natural antimicrobial from extract of Stachys sieboldii MIQ against food borne bacteria. The hexane extract of Stachys sieboldii MIQ at 250$\mu\textrm{g}$/$m\ell$ per disc showed 15 ~ 20 mm inhibition zone against gram positive and gram negative barteria. Minimum inhibitory concentration (MIC) of hexane extract was 250${\mu}g$/$m\ell$against Bacillus cereus, 250~500${\mu}g$/$m\ell$against Listeria monocytogenes, 500${\mu}g$/$m\ell$ against Staphylococcus aureus, Psedomonas aeruginosa. Observation by transmission electron microscope, showed that disruption of the cell wall assumed to be due to the bactericidal activity. In addition, the membrane integrity of the sensitive cells was disrupted by exposure to Stachys sieboldii MIQ extract on the D-$\beta$-galatosidase activity as substrate of O-nitrophenol-$\beta$-D-galacto-pyranoside. The hexane extract of Stachys sieboldii MIQ was very stable on the pH and thermal stability.