DOI QR코드

DOI QR Code

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents

토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가

  • 조승식 (목포대학교 약학대학 천연약물연구소) ;
  • 홍준희 (조선대학교 약학과) ;
  • 채정일 (전북대학교 치의학대학원 치과약리학교실(BK21 플러스사업단)) ;
  • 심정현 (목포대학교 약학대학 천연약물연구소) ;
  • 나종삼 (전북대학교 동물생명공학과) ;
  • 유진철 (조선대학교 약학과)
  • Received : 2014.07.16
  • Accepted : 2014.08.20
  • Published : 2014.09.30

Abstract

IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

본 연구진은 신규 미생물인 Nocardia sp. CS682 균주에서 항균물질인 nargenicin을 확보하고, 그 유도체 5종을 확보하여 그람양성, 음성 및 다약제 내성균에 대한 항균 효능 및 LPS로 자극된 대식세포에서의 nitric oxide 생성 억제능을 확인하였다. Nargenicin 유도체들은 nargenicin 및 vancomycin에 비교하여 우수한 항균 활성을 보여주었으며, compound 4 및 5는 광범위한 항균 효능 외에 nitric oxide 생성 억제능을 보여 항균-항염효과를 가지는 dual effector로써 감염, 면역 질환에 응용 가능성을 시사하였다. Nargenicin 유도체들은 향후 염증반응에서의 면역 조절 기작에 대한 추가 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Ager, S. and K. Gould. 2012. Clinical update on linezolid in the treatment of Gram-positive bacterial infections. Infect Drug Resist. 5: 87-102.
  2. Akhter, M., A. Husain, N. Akhter, and M. S. Khan. 2011. Synthesis, Antiinflammatory and Antimicrobial Activity of Some New 1-(3-Phenyl-3,4-Dihydro-2H-1,3-Benzoxazin-6-yl)-Ethanone Derivatives. Indian J Pharm Sci. 73(1): 101-104. https://doi.org/10.4103/0250-474X.89767
  3. Bhandari, S. V., K. G. Bothara, M. K. Raut, A. A. Patil, A. P. Sarkate, and V. J. Mokale. 2008. Design, synthesis and evaluation of antiinflammatory, analgesic and ulcerogenicity studies of novel S-substituted phenacyl-1,3,4-oxadiazole-2-thiol and Schiff bases of diclofenac acid as nonulcerogenic derivatives. Bioorg Med Chem 16(4): 1822-1831. https://doi.org/10.1016/j.bmc.2007.11.014
  4. Bondarenko, V. M., N. A. Vinogradov, and V. V. Maleev. 1999. The antimicrobial activity of nitric oxide and its role in the infectious process. Zh Mikrobiol Epidemiol Immunobiol. (5): 61-67.
  5. Bosca, L., M. Zeini, P. G. Traves, and S. Hortelano. 2005. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology. 208(2):249-258. https://doi.org/10.1016/j.tox.2004.11.035
  6. Boyanova, L., R. Kolarov, and I. Mitov. 2014. Recent evolution of antibiotic resistance in the anaerobes as compared to previous decades. Anaerobe.Epub ahead of print.
  7. Chastre, J., F. Blasi, R. G. Masterton, J. Rello, A. Torres, and T. Welte. 2014. European perspective and update on the management of nosocomial pneumonia due to methicillinresistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect. 20 Suppl 4: 19-36.
  8. Cho, A., T. W. Glinka, M. Ludwikow, A. T. Fan, M. Wang, and S. J. Hecker. 2001. New anti-MRSA cephalosporins with a basic aminopyridine at the C-7 position. Bioorg Med Chem Lett. 11(2): 137-140. https://doi.org/10.1016/S0960-894X(00)00603-X
  9. Cho, S. S., J. K. Sohng, H. J. Lee, S. J. Park, J. R. Simkhada, and J. C. Yoo. 2009. Quantitative analysis of nargenicin in Nocardia sp. CS682 culture by high performance liquid chromatography. Arch Pharm Res. 32(3): 335-340. https://doi.org/10.1007/s12272-009-1304-0
  10. CLSI. 2007. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; seventh informational supplement. Suit, USA. 27: 98-114.
  11. Du, Z. Y. and X. Y. Li. 1999. Inhibitory effects of indomethacin on interleukin-1 and nitric oxide production in rat microglia in vitro. Int J Immunopharmacol. 21(3): 219-225. https://doi.org/10.1016/S0192-0561(98)00084-8
  12. Fathalla, O. A., E. M. Kassem, N. M. Ibrahem, and M. M. Kamel. 2008. Synthesis of some new quinazolin-4-one derivatives and evaluation of their antimicrobial and antiinflammatory effects. Acta Pol Pharm. 65(1): 11-20.
  13. Franklin, P. X., S. Yerande, H. M. Thakar, G. S. Inamdar, R. S. Giri, H. Padh, V. Sudarsanam, and K. K. Vasu. 2009. Synthesis, Antiinflammatory and HIV-1 Integrase Inhibitory Activities of 1,2-Bis[5-thiazolyl]ethane-1,2-dione Derivatives. Indian J Pharm Sci. 71(3):259-263. https://doi.org/10.4103/0250-474X.56021
  14. Guzik, T. J., R. Korbut, and T. Adamek-Guzik. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 54(4): 469-487.
  15. Hrabak, A., V. Vercruysse, I. L. Kahan, and B. Vray. 2001. Indomethacin prevents the induction of inducible nitric oxide synthase in murine peritoneal macrophages and decreases their nitric oxide production. Life Sci. 68(16): 1923-1930. https://doi.org/10.1016/S0024-3205(01)00978-X
  16. Jung, Y. H. 2003. Monitoring of antimicrobial resistant bacteria from animal farm environments in Korea. The Korea food and drug admistration.
  17. Kato, A., H. Hirata, Y. Ohashi, K. Fujii, K. Mori, and K. Harada. 2011. A new anti-MRSA antibiotic complex, WAP-8294A II. Structure characterization of minor components by ESI LCMS and MS/MS. J Antibiot (Tokyo). 64(5): 373-379. https://doi.org/10.1038/ja.2011.9
  18. Kato, A., S. Nakaya, N. Kokubo, Y. Aiba, Y. Ohashi, H. Hirata, K. Fujii, and K. Harada. 1998. A new anti-MRSA antibiotic complex, WAP-8294A. I. Taxonomy, isolation and biological activities. J Antibiot (Tokyo). 51(10): 929-935. https://doi.org/10.7164/antibiotics.51.929
  19. Kazimierczuk, Z., M. Chalimoniuk, A. E. Laudy, R. Moo-Puc, R. Cedillo-Rivera, B. J. Starosciak, and S. J. Chrapusta. 2010. Synthesis and antimicrobial and nitric oxide synthase inhibitory activities of novel isothiourea derivatives. Arch Pharm Res. 33(6): 821-830. https://doi.org/10.1007/s12272-010-0604-8
  20. Kergueris, M. F., Y. Le Normand, P. Jahan, and N. Milpied. 1994. Application of USC* PACK clinical programs to vancomycin in neutropenic patients. Int. J Biomed Comput. 36(1-2): 163-165. https://doi.org/10.1016/0020-7101(94)90114-7
  21. Khan, S. A., P. Mullick, S. Pandit, and D. Kaushik. 2009. Synthesis of hydrazones derivatives of quinoxalinone-prospective antimicrobial and antiinflammatory agents. Acta Pol Pharm. 66(2): 169-172.
  22. Koju, D., S. Maharjan, D. Dhakal, J. C. Yoo, and J. K. Sohng. 2012. Effect of different biosynthetic precursors on the production of nargenicin A1 from metabolically engineered Nocardia sp. CS682. J Microbiol Biotechnol. 22(8): 1127-1132. https://doi.org/10.4014/jmb.1202.02027
  23. Kontogiorgis, C. A. and D. J. Hadjipavlou-Litina. 2005. Synthesis and antiinflammatory activity of coumarin derivatives. J Med Chem. 48(20): 6400-6408. https://doi.org/10.1021/jm0580149
  24. Maharjan, S., N. Aryal, S. Bhattarai, D. Koju, J. Lamichhane, and J. K. Sohng. 2012. Biosynthesis of the nargenicin A1 pyrrole moiety from Nocardia sp. CS682. Appl Microbiol Biotechnol. 93(2): 687-696. https://doi.org/10.1007/s00253-011-3567-x
  25. Maharjan, S., D. Koju, H. C. Lee, J. C. Yoo, and J. K. Sohng. 2012. Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A(1). Appl Biochem Biotechnol. 166(3): 805-817. https://doi.org/10.1007/s12010-011-9470-1
  26. McManus, P. S., V. O. Stockwell, G. W. Sundin, and A. L. Jones. 2002. Antibiotic use in plant agriculture. Annu Rev Phytopathol 40: 443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  27. Mendes, R. E., L. M. Deshpande, and R. N. Jones. 2014. Linezolid update: Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat. 17(1-2): 1-12. https://doi.org/10.1016/j.drup.2014.04.002
  28. Nand, K., R. Joseph and T. N. Rao. 1973. Use of griseofulvin for the isolation of auxotrophic mutants of Rhodotorula sp. Experientia 29(2): 237-239. https://doi.org/10.1007/BF01945499
  29. Ojewole, J. A. 2006. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats. Phytother Res. 20(9): 764-772. https://doi.org/10.1002/ptr.1952
  30. Rai, A. 2013. The Antiinflammatory and Antiarthritic Properties of Ethanol Extract of Hedera helix. Indian. J Pharm Sci 75(1): 99-102.
  31. Rumore, M. M., M. Roth, and A. Orfanos. 2010. Dietary tyramine restriction for hospitalized patients on linezolid: an update. Nutr Clin Pract. 25(3): 265-269. https://doi.org/10.1177/0884533610368711
  32. Sohng, J. K., T. Yamaguchi, C. N. Seong, K. S. Baik, S. C. Park, H. J. Lee, S. Y. Jang, J. R. Simkhada, and J. C. Yoo. 2008. Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch Pharm Res. 31(10): 1339-1345. https://doi.org/10.1007/s12272-001-2115-0
  33. Stille, W., W. Sietzen, H. A. Dieterich, and J. J. Fell. 1988. Clinical efficacy and safety of teicoplanin. J Antimicrob Chemother. 21 Suppl A: 69-79. https://doi.org/10.1093/jac/21.suppl_A.69
  34. Sunagawa, M., M. Itoh, K. Kubota, A. Sasaki, Y. Ueda, P. Angehrn, A. Bourson, E. Goetschi, P. Hebeisen, and R. L. Then. 2002. New anti-MRSA and anti-VRE carbapenems; synthesis and structure-activity relationships of 1beta-methyl-2-(thiazol-2-lthio)carbapenems. J Antibiot (Tokyo). 55(8): 722-757. https://doi.org/10.7164/antibiotics.55.722
  35. Vander Brook, M. J., A. N. Wick, and et al. 1946. Extraction and purification of streptomycin, with a note on streptothricin. J Biol Chem 165(2): 463-468.
  36. Watkins, R. R., K. M. Papp-Wallace, S. M. Drawz, and R. A. Bonomo. 2013. Novel betalactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Front Microbiol.4: 392.
  37. Witte, W. 2000. Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16 Suppl 1: S19-24. https://doi.org/10.1016/S0924-8579(00)00301-0
  38. Yoo, K. Y., I. K. Hwang, J. D. Kim, I. J. Kang, J. Park, J. S. Yi, J. K. Kim, Y. S. Bae, and M. H. Won. 2008. Antiinflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/reperfusion. Phytother Res. 22(11): 1527-1532. https://doi.org/10.1002/ptr.2527