• Title/Summary/Keyword: minimax inequality

Search Result 18, Processing Time 0.027 seconds

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

GENERALIZED MINIMAX THEOREMS IN GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.559-578
    • /
    • 2009
  • In this work, we obtain intersection theorem, analytic alternative and von Neumann type minimax theorem in G-convex spaces. We also generalize Ky Fan minimax inequality to acyclic versions in G-convex spaces. The result is applied to formulate acyclic versions of other minimax results, a theorem of systems of inequalities and analytic alternative.

FIXED POINTS AND ALTERNATIVE PRINCIPLES

  • Park, Se-Hie;Kim, Hoon-Joo
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.439-449
    • /
    • 2012
  • In a recent paper, M. Balaj [B] established an alternative principle. The principle was applied to a matching theorem of Ky Fan type, an analytic alternative, a minimax inequality, and existence of solutions of a vector equilibrium theorem. Based on the first author's fixed point theorems, in the present paper, we obtain generalizations of the main result of Balaj [B] and their applications.

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

ON A VARIATIONAL INEQUALITY WITH $\mathcal{C}$-CONCAVITY

  • Kim, Won Kyu;Lee, Kyoung Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.11-16
    • /
    • 2009
  • In this paper, using the diagonally $\mathcal{C}$-concave condition, we will prove a functional inequality in a topological space, and as an application, we can obtain a new variational inequality.

  • PDF

A Note on a Theorem by Parida and Sen

  • Im, Sung-Mo;Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.3-6
    • /
    • 1988
  • In a recent paper, Parida and Sen obtained a variational-like inequality. In this note, we obtain another variational-like inequality using Fan's minimax inequality [1] and Michael's selection theorem [2]. Also we generalize the Parida-Sen theorem in Banach spaces.

  • PDF

FIXED POINT THEOREMS, SECTION PROPERTIES AND MINIMAX INEQUALITIES ON K-G-CONVEX SPACES

  • Balaj, Mircea
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.387-395
    • /
    • 2002
  • In [11] Kim obtained fixed point theorems for maps defined on some “locally G-convex”subsets of a generalized convex space. Theorem 2 in Kim's article determines us to introduce, in this paper, the notion of K-G-convex space. In this framework we obtain fixed point theorems, section properties and minimax inequalities.

HALPERN'S ITERATION FOR APPROXIMATING FIXED POINTS OF A NEW CLASS OF ENRICHED NONSPREDING-TYPE MAPPINGS IN HILBERT SPACES WITH APPLICATIONS TO MINIMAX INEQUALITY PROBLEM

  • Imo Kalu Agwu;Godwin Amechi Okeke;Hallowed Oluwadara Olaoluwa;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.673-710
    • /
    • 2024
  • In this paper, we propose a modified Halpern's iterative scheme developed from a sequence of a new class of enriched nonspreading mappings and an enriched nonexpansive mapping in the setup of a real Hilbert space. Moreover, we prove strong convergence theorem of the proposed method under mild conditions on the control parameters. Also, we obtain some basic properties of our new class of enriched nonspreading mappings.