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A NON-COMPACT GENERALIZATION OF
HORVATH’S INTERSECTION THEOREM*

WonN Kyu KiM

1. Introduction

Ky Fan’s minimax inequality is an important tool in nonlinear func-
tional analysis and its applications, e.g. game theory and economic
theory. Since Fan gave his minimax inequality in [2], various exten-
sions of this interesting result have been obtained (see [4,11] and the
references therein). Using Fan’s minimax inequality, Ha [6] obtained
a non-compact version of Sion’s minimax theorem in topological vec-
tor spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11],
Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan (1] fur-
ther generalize Fan’s minimax theorem in more general settings. In
[9], using the concept of submaximum, Komiya proved a topological
minimax theorem which also generalizes Sion’s minimax thoerem and
another minimax theorem of Ha in [5] without using linear structures.
And next Lin-Quan [10] further generalizes his result to two function
versions and non-compact topological settings.

The usual proofs of the classical von Neumann minimax theorem
and its various generalizations are based on the deep combinatorial
result of Sperner or the Brouwer fixed point theorem. On the other
hand, the important role of connectedness ir minimax theorems was
first noted by Wu [16], followed by Tuy [15] who was able to generalize
Sion’s minimax theorem. And Joé [8] gave a simple proof of the von
Neumann minimax theorem by using the topological concept. Recently,
by following the method of Joé, Horvath[7] gave a general result in
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the theory of minimax, which contains a number of minimax theorems
and the proofs of which require neither Hahn-Banach’s theorem nor
Brouwer’s fixed point theorem.

In this paper, we shall prove a non-compact general minimax theo-
rem in non-convex topological settings and next prove an intersection
theorem which generalizes Horvath’s result.

2. Preliminaries

Throughout this paper, we assume all topological spaces are Haus-
dorff. Let A be a subset of a topological space X. We shall denote
by 24 the family of all subsets of A. If A is a subset of a vector
space, we shall denote by coA the convex hull of A. If 4 is a non-
empty subset of a topological space X and T : A — 2% is a cor-
respondence, then 77! : X — 24 is a correspondence defined by
T-Yy)={z € 4:y € T(z)} foreach y € X.

Let X be a non-empty set in a topological space. ¥ a non-empty
convex set in a vector space and f : X x Y — R be a real-valued
function. Then f is said to be upper semicontinuous on the line segment
of Y if for each € X and y1,ys € ¥, the function

t— fla,tyr + (1 - t)ys)

is an upper semicontinuous function of ¢ on [0, 1].

If f is an upper semicontinuous function on Y, then f is clearly
upper semicontinuous on the line segment of Y. In fact, the mapping
t — ty1 +(1 1)y, is a bicontinuous mapping of ¢ for each fixed y;,y2 €
Y. And f is said to be lower semicontinuous on the line segment of ¥
if —f is upper semicontinuous on the line segment of ¥.

Let X be a non-empty convex set in a vector space and f be a real-
valued function defined on X. We recall that f is called quasi-concave
if for any real number ¢, the set {x € X : f(z) > ¢} is convex ; and f is
called quasi-convez if — f is quasi-concave. Let C be a non-empty subset
of X. We may call f is quasi-concave on Cif the set {2 € C : flz) >t}
1s convex; and f is called quasi-conver on Cif —f is quasi-concave on
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C. Other definitions and terminologies in this paper can be found in

(7, 10).

3. A generalization of Horvath’s intersection theorem

We begin with the following new minimax theorem of Horvath :

=

LEMMA [7]. Let X be a non-empty compact topological space and
Y be a non-empty convex subset of a vector space. Let f : X xY — R
be a real-valued function satisfying the following conditions:

(1) for each fixed y € Y, v — f(x,y) is a lower semicontinuous
function of r on X;

(2) for each fixed z € X, y — f(z,y) is a quasi-concave function
ofyonY;

(3) f is upper semicontinuous on the line segment of ¥';

(4) for each non-empty finite set F CY and each A € R,

the set Nyer { € X : f(x,y) < A} Is either connected or empty.
Then we have

inf sup f(z,y) < sup inf f(z,y).
z€X yeY yeyze.\’ ’

REMARK. The condition (4) of Lemma is a weakening introduced
by Geraghty-Lin [3] of the condition first introduced by Terkelson [14].

First we shall prove the following non-compact minimax theorem :

THEOREM 1. Let X be a non-empty subset of a topological space
and Y be a non-empty convex subset of a vector space. Let f : X xY —
R be a real-valued function satisfving the following conditions:

(1) for each fixed y € Y, x — f(z,y) is a lower semicontmuous
function of x on X;

(2) for each fixed x € X, y — f(x,y) is a quasi-concave function
ofyonY;

(3) f is upper semicontinuous on the line segment of ¥';
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(4) for each non-empty finite set F' C Y, there exists a non-empty
compact subset Cr of X such that for each A € R and each
finite subset G of co( F'),

the set Nyeq {r € Cr: flz,y) < A} Is either connected or empty,
and, for each y € co( F),

), Sy 2 mas{ it S y), fut sup fla,p)).

Then we have

mf sup f(x,y) < sup mf flz,y).
€N yey yey T€X

Proof. Let @ = infrex supyey fla,y), § = supyey infzex fla,y)
and suppose the contrary, ie o > (3. Then there cxists € > 0 such
that 3 + € < a. Now let K(y) := {a € X : f(z,y) < 3 + €} for each
y € Y. Then by the deﬁmtlon of /3, each I{(y) is non-empty, and by the
assumption (1), each N (y) is closed in X.

Note that by the assumption (*), we can obtain that each IK(y) is
compact. In fact, for each y € Y, there exists a non-empty compact set
Cy such that o = infrex sup,ey f(2,y) < infrex\c, f(z,y), so that
K(y) C Cy and hence K (y) is compact.

To obtain a contradiction, we must show that Nyey N (y) is non-
empty. Therefore it suffices to show that the collection {I(y):y € Y}
has the finite intersection property. Let F' = {y1, - ,yn} be any finite
subset of ¥ and CF be the non-empty compact subset of X satisfying
the condition (4). Now let

K(y):= K(y)N(N{z € Cr: f(a,y:) < B+€}) for each y € co(F).

Then each K(y) is a compact subset of Cp. We first show that
N, K(y;) # 0. Now we consider the restriction f|c, xco(r) of f on
Cr x co( F) C X xY; then the whole assumptions of Lemma are clearly
satisfied, so that by Lenuna, we have

inf  sup fla,y)< sup inf flz,y).
reCF yEco( F) T/ECO(F)‘E€CF
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We note that the condition (*) implies inf ;e f(2,y) = infrex fla, y).
By the assumption (*) again, we have
imf  sup f(a,y) < sup inf f(z,y)
reCp yEco( F) yEco(F)“ZCF

= sup inf f(z,y)
yEco(F) 7N

IA

sup inf f(z,y)
ye)y 2€X

< B +e,

so that there exists z, € C'r such that f(z,.y) < 3+e€forall y € co(F).
Hence we have z, € ﬂyem(p)ff(y) C Niw; K (y:), so that the collection
{K(y) : y € Y} of compact sets has the finite intersection property.
Therefore we have Nyey N (y) # 0, so that for any T € Nyey K (y). we
have f(z,y) < B+ € for all y € Y. Hence inf,cy sup,ey f(a,y) <
3 + ¢ < a, which contradicts to the definition of &.  This completes
the proof.

REMARK. In Theorem 1, if for every finite subset Fof ¥, Cp = X is
compact, then the assumption (*) is automatically satisfied, and in this
case, the assumption (4) is stronger than the corresponding assumption
(4) of Lemma.

As in [7], we can obtain the following

COROLLARY 1. Let X be a non-empty convex subset of a topological
vector space and Y be a non-empty convex subset of a vector space.
Let f: X xY — R be a real-valued function satisfying the following
conditions:

(1) for each fixed y € Y, « — f(z,y) is a lower semicontinuous
function of 2 on X;

(2) for each fixed v € X, y — f(x,y) Is a quasi-concave function
of y onY;

(3) f 1s upper semicontinuous on the line segment of Y';

(4) for each non-empty finite set F C Y, there exists a non-empty
compact subset Cr of X such that for each A € R and each
y € co(F'),

x — f(ax,y) Is a quasi-convex function of z on Cy,
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and

xeﬁ,gl\fcp f(z,y) 2 max{ inf f(z,y), inf sup flz,y)}

Then we have

inf sup f(z,y) < sup mf flz,y)-
r€eX yeEY yey

Proof. Since the function 2 — f(z,y) is quasi-convex on CF for each
y € co(F'), then the set

Nyeco(Fy{z € Cr @ f(x,y) < A} is either convex or empty;

so that the assumption (4) of Theorem 1 is satisfied. Therefore we
obtain the conclusion.

We can obtain the following generalization of von Neumann-Sion
minimax theorem as a corollary:

COROLLARY 2. Let X be a non-empty compact convex subset of
a topological vector space and Y be a non-empty convex subset of a
vector space. Let f: X x Y — R be a real-valued function satisfying
the following conditions:
(1) for each fixedy € Y, * — f(z,y) is a lower semicontinuous and
quasi-convex function of ¥ on X;
(2) for each fixed x € X, y — f(x,y) is a quasi-concave and upper
semicontinuous on the line segment function of y on Y.

Then we have

mf sup f(z,y) < aup 1nf flz,y).
r€X yey
Let Y be a convex subset of a vector space and for each y;,y2 €
Y, [y1,y2) denotes the line segment {ty, +(1—t)yz : t € [0, 1]}, equipped
with the Euclidean topology. Let A be a non-empty subset of a topo-
logical space X, then A is called compactly closed 1n X if ANC'is closed
for every compact subset C' of X.

Next we shall prove a generalization of Horvath’s intersection theo-
rem[7] in non-compact non-convex sets.
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THEOREM 2. Let X be a non-empty subset of a topological space,
Y a non-empty convex subset of a vector space andlet T : Y — 2% be
a correspondence satisfying the following:

(1) for each y € Y, T(y) is compactly closed in X;

(2) for each z € X, Y \ T~ !(a) is convex;

(3) for each x+ € X andyi,y2 € Y, T7'(x) N [y1,y2] is open in
{yl ) yZ];

(4) for each y € Y, there exists a non-empty compact subset Cy of
X with T(y) N Cy # 0 such that for each finite subset F of Y,
(41) Nyer (T(y) N Cy) is either connected or empty,

(4i1) if Nyer (T(y)NCy) # 0, then Nyep (T(Y)NCHNC: #
for each z € Y\ F.

Then we have NyeyT(y) # 0.

Proof. By the assumptions (1) and (4), for each y € Y, T(y) N C,y
is non-empty compact, and we simply denote T(y) N C, by A,. It
suffices to show that the collection {4, : y € Y’} of compact sets has
the finite intersection property. We now use the induction argument on
of any ﬁnit( subset F of Y. When |[F| = 1., we
have done Ne\t in case |F| = 2; suppose that Ay, N Ay, = 0 for some
y1,y2 € Y. Define

A¢:=T(ty; + (1 —t)y2) for each t € [0,1],

and let «
U= {t € 0.1]: AN Cyy C Ay).

Vi={tel0.1]: 4,nC,, C Ay}

By the assumption that 4,, N 4,, = @, we have U NV = §. Next,
we have U UV = [0,1]. In fact, suppose there exists t € (0,1) such
that e (UUV) =UnVe. Then there exists 2 € T(tyr + (1 — Hy2)
such that z ¢ T(y;) and v ¢ T (y2). Therefore yi,y2 € Y \T x), and
by the assumption (2), we have fy; + (1 — thy € Y\T! ), so that
x ¢ T(fy; + (1 — t)y2), which is a contradiction.

Now we show that U = {t € [0,1] : (T(ty1 +(1—1)y2)NCy, ) C (T, N
Cy,)} is closed in [0,1]. Let (¢,) be a sequence in U, which converges
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to t, € [0,1]. Then for each n € N, (T(tay:r + (1 = ta)yz) N Cy,) C
(T(y2) N Cy,), so that (T(teyr +(1 =t )y2) NCy, ) N (T(y1) N Cy, ) = 0.
By the assumption (4ii), for each z € (T(y1)NCy, )NCy,, = & T(tny: +
(1 — ta)y2), which implies t,y; + (1 — to)y2 € T~ '(z). Therefore we
have thy; + (1 —tn)y2 ¢ Ul.eT(yl)nC“nch‘l(x). By the assumption
(3), UIGT(yI)nc“nch_l(w) M [y1,y2] is open in [y1,y2], and hence
toy1 + (1 —to)y2 ¢ UzeT(yl)ncylncr”T"l(-l‘)-
This implies that t,y1 +(1—1,)y2 € T () for all z € T(y1)NCy, NCy,,
and hence ® ¢ T(toy1 +(1—t,)y2) for all @ € T(y1)NCy, NCy,. Therefore
we have
T(toy: + (1 —to)y2) O (T(y1) N ny N Cy;))

= (T(toyr + (1 —t,)y2) N Cyz) n (T(yl) n ny)

={.
Hence (T(toyr + (1 — to)y2) N Cy,) C (T(y2) N Cy,), so that t, € U.
Therefore U is closed. Similarly, we can show that V' is closed in [0, 1].
Since 0 € U and 1 € V, {U,V} is a non-empty closed separation of
[0,1], which is a contradiction. ~ Therefore we have Ay, N Ay, # @ for
each y1,y2 € Y.

Suppose that any subcollection of n elements of {4, : y € Y} has
non-empty intersection. Now we must show that any collection of 1 +1
elements of {4, : y € Y’} has also non-empty intersection. For any
Yo, 1,7+ »Yn € Y, we suppose that N4, # 0 and N4, # 0.

i#1

Then it suffices to show that Nj_ A4, # 0.
We now define

Ap = T(tyo + (1 — t)y1) N(Ni=p4,,) for each t € [0,1].
And we let
U= {t € [0,1): (A N1 Cyy) N (Vg Ay,) C Ay, N(Migdy, ),
Vi={t €[0.1]: (A: N Ty, ) NNy Ay,) C Ay, N(NIL, 4y, ))-
Now suppose that N_g4,, = @ ; then by repeating the preceeding
argument, we can obtain the following:
(a) DUV =[0,1],
(b) U and V' are non-empty closed sets, and

(c) TNV =0.
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Therefore we have a contradiction. Hence we can obtain N34y, =

of compact sets has the finite intersection property, and hence @ #
Nyey Ay = Nyey (T(y) N Cy) C Nyey T(y), which completes the proof.

REMARK. We can replace the assumption (3) by the following with-

out affecting the conclusion:

(3') for each * € X and yy,y2 € ¥, T7'(z) N [y1,12] is closed in

[y1.y2).

When X is compact, we let C, = X for each y € Y ; then the

condition (4 ii) is automatically satisfied. In this case, we can obtain
Theorem 3 in [7] as a corollary:

COROLLARY 3. Let X be a non-empty compact subset of a topo-

logical space. Y a non-emptv convex subset of a vector space and let

T

-~ v

.Y — 2% be a correspondence satisfying the following:

(1) for each y € Y, T(y) is non-empty closed i X
(2) foreachaz € X, Y\ T~ '(2) is convex;
) for each @ € X and y,,y, € Y, T a) 0 [y1,y2] is open in
[yl s UZ]-'
(4) for every finite subset F of V',
NyerT(y) is either connected or empty.
Then we have Nyey T(y) # 0.
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