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GENERALIZED MINIMAX THEOREMS

IN GENERALIZED CONVEX SPACES

Hoonjoo Kim†

Abstract. In this work, we obtain intersection theorem, analytic alter-

native and von Neumann type minimax theorem in G-convex spaces. We

also generalize Ky Fan minimax inequality to acyclic versions in G-convex

spaces. The result is applied to formulate acyclic versions of other minimax

results, a theorem of systems of inequalities and analytic alternative.

1. Introduction

There have appeared many generalizations of the concept of convex subset

of a topological vector space. Generalized convex space or G-convex space

introduced by [25, 26] is considered common and general one.

In G-convex spaces, we obtain intersection theorem, analytic alternative and

von Neumann type minimax theorem. We also generalize Ky Fan minimax

inequality to acyclic versions in G-convex spaces. The result is applied to

formulate acyclic versions of other minimax results, a theorem of systems of

inequalities and analytic alternative. These results generalize and improve the

corresponding results in [1, 3–15, 17–19, 28–32].

A multimap (or simply, a map) F : X ( Y is a function from a set X

into the power set of Y ; that is, a function with the values F (x) ⊂ Y for
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x ∈ X and the fibers F−(y) := {x ∈ X| y ∈ F (x)} for y ∈ Y . For A ⊂ X, let

F (A) :=
⋃{F (x) |x ∈ A}. Throughout this paper, we assume that multimaps

have nonempty values otherwise explicitly stated or obvious from the context.

The closure operation and graph of F are denoted by and GrF , resp.

Let X be a set (in a vector space) and D a nonempty subset of X. Then

(X, D) is called a convex space if convex hulls of any nonempty finite subsets of

D is contained in X and X has a topology that induces the Euclidean topology

on such convex hulls.

A continuous selection f : X → Y of a map F : X ( Y is a continuous

function such that f(x) ∈ F (x) for all x ∈ X.

A function f : X → Y is compactly l.s.c. (resp., compactly u.s.c.) on Y , if

f is lower (resp., upper) semicontinuous on each non-empty compact subset of

Y .

Let 〈D〉 denote the set of all nonempty finite subsets of a set D.

For topological spaces X and Y , a map F : X ( Y is upper semicontinuous

(u.s.c.) if it has nonempty values and, for each closed set B ⊂ Y , F−(B) is

closed in X.

Note that composites of u.s.c. maps are u.s.c. and that the image of a

compact set under an u.s.c. map with compact values is compact.

A generalized convex space or a G-convex space (X,D; Γ) consists of a topo-

logical space X, a nonempty set D, and a multimap Γ : 〈D〉 ( X such that for

each A ∈ 〈D〉 with its cardinal |A| = n + 1, there exists a continuous function

φA : ∆n → ΓA := Γ(A) such that J ∈ 〈A〉 implies φA(∆J) ⊂ ΓJ := Γ(J). In

certain cases, we may assume φA(∆n) = ΓA.

Note that ∆n is an n-simplex with vertices v0, v1, · · · , vn, and ∆J the face

of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, · · · , an} and J =
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{ai0 , ai1 , · · · , aik
} ⊂ A, then ∆J = co{vi0 , vi1 , · · · , vik

}, where co denotes the

convex hull.

We may write (X; Γ) = (X,X; Γ).

In case to emphasize X ⊃ D, (X, D; Γ) will be denoted by (X ⊃ D; Γ).

For a G-convex space (X ⊃ D; Γ), a subset Y ⊂ X is said to be Γ-convex if

for each N ∈ 〈D〉, N ⊂ Y implies ΓN ⊂ Y .

Examples of G-convex spaces can be found in Park [21–23] and references

therein. Any convex space (X,D) becomes a G-convex space (X,D; Γ) by

putting ΓA = co A. A C-space (or an H-space) (X, F ) is a G-convex space

(X; Γ). In fact, by putting ΓA = F (A) for each A ∈ 〈X〉 with |A| = n+1, there

exists a continuous map φA : ∆n → X such that for all J ⊂ A, φA(∆J ) ⊂ F (J)

by Horvath [13, Theorem 1].

The other major examples of G-convex spaces are convex subsets of a t.v.s.,

Komiya’s convex spaces [14] and Bielawski’s simplicial convexities [5].

A class Aκ
c is defined as follows:

T ∈ Aκ
c (X, Y ) ⇐⇒ T is one such that, for each T and each nonempty

compact subset K of X, there exists a map Γ ∈ Ac(K, Y ) satisfying Γx ⊂ Tx

for all x ∈ K; where Ac is consisting of finite composites of maps in A, and A

is a class of maps satisfying the following properties:

(i) A contains the class C of (single-valued) continuous functions;

(ii) each F ∈ Ac is u.s.c. and compact-valued; and

(iii) for any polytope P , each F ∈ Ac(P, P ) has a fixed point.

Here, a polytope P is a homeomorphic image of a standard simplex. For

details, see [25, 26].

Let X be a Hausdorff space and (Y, D; Γ) be a G-convex space. A multimap

T : X ( Y is called a Φ-map provided that there exists a multimap S : X ( D

satisfying
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(a) for each x ∈ X, M ∈ 〈S(x)〉 implies ΓM ⊂ T (x); and

(b)X =
⋃{Int S−(y) : y ∈ D},

where IntS−(y) denotes the interior of S−(y) in X. See Park [20].

For a G-convex space (X; Γ), a real function f : X → R is said to be

quasiconvex [resp. quasiconcave] if {x ∈ X | f(x) < λ} [resp. {x ∈ X | f(x) >

λ} ] is Γ-convex for λ ∈ R . See Park [21].

2. Coincidence and Intersection Theorems

We begin with the following coincidence theorem [25, Theorem 1], [26, The-

orem 1];

Theorem 1. Let (X,D; Γ) be a G-convex space, Y a Hausdorff space, S :

D ( Y , T : X ( Y maps, and F ∈ Aκ
c (X, Y ). Suppose that

(1.1) for each x ∈ D, S(x) is compactly open in Y ;

(1.2) for each y ∈ F (X), M ∈ 〈S−(y)〉 implies ΓM ⊂ T−(y);

(1.3) there exists a nonempty compact subset K of Y such that F (X) ∩K

⊂ S(D); and

(1.4) either

(i) Y \K ⊂ S(M) for some M ∈ 〈D〉; or

(ii) for D ⊂ X and each N ∈ 〈D〉, there exists a compact Γ-convex subset

LN of X containing N such that F (LN )\K ⊂ S(LN ∩D).

Then there exists an x̄ ∈ X such that F (x̄) ∩ T (x̄) 6= ∅.

Note that, in [25, 26], Theorem 1 is applied to establish fundamental the-

orems in the KKM theory on generalized convex spaces, fixed point theorems

and many others.

The following is a selection theorem which also shows that Φ is an example

of maps in Aκ
c Park [20, Theorem 1]:
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Theorem 2. Let X be a Hausdorff space, (Y, D; Γ) be a G-convex space

multimap and T : X ( Y a Φ-map. Then for any nonempty compact subset

K of X, T |K has a continuous selection f : K → Y such that f(K) ⊂ ΓA

for some A ∈ 〈D〉. More precisely, there exist two functions p : K → ∆n and

φA : ∆n → ΓA such that f = φA ◦ p for some A ∈ 〈D〉 with |A| = n + 1.

For any set S ⊂ X × Y and x ∈ X, y ∈ Y , let S(x) = {y ∈ Y : (x, y) ∈ S}
and S(y) = {x ∈ X : (x, y) ∈ S}.

From Theorem 1 and 2, we can deduce the following intersection theorem:

Theorem 3. Let (X, Γ) and (Y, Γ′) be Hausdorff G-convex spaces and

S1, S2, T1, T2 ⊂ X × Y such that

(3.1) for each x ∈ X, M ′ ∈ 〈S1(x)〉 implies Γ′M ′ ⊂ T1(x) and X = {⋃ IntS1(y) :

y ∈ Y };
(3.2) for each y ∈ Y , M ∈ 〈S2(y)〉 implies ΓM ⊂ T2(y) and Y = {⋃ IntS2(x) :

x ∈ X}; and

(3.3) for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of X

containing N such that {y ∈ Y : y /∈ IntS2(x) for all x ∈ LN} is

relatively compact in Y .

Then T1 ∩ T2 6= ∅.

Proof. Let F : X ( Y be a map whose graph is T1. Then by Theorem 2,

F ∈ Aκ
c (X, Y ). Let T : X ( Y be a map whose graph is T2 and S : X ( Y a

map defined by S(x) =IntS2(x) for x ∈ X. Now we apply Theorem 1 (ii) with

X = D.

Note that (1.1) holds trivially. For each y ∈ Y , by (3.2), M ∈ 〈S−(y)〉 ⊂
〈S2(y)〉 implies ΓM ⊂ T2(y) = T−(y); and hence (1.2) is satisfied. Moreover,

by (3.2),

Y =
⋃
{IntS2(x) : x ∈ X} =

⋃
{S(x) : x ∈ X} = S(X)
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and hence (1.3) is satisfied. Finally, let K be a compact subset of Y containing

the set in (3.3). Then

F (LN )\K ⊂ {y ∈ Y : y /∈ K} ⊂ {y ∈ Y : y ∈ IntS2(x) for some x ∈ LN}

⊂ {S(x) : x ∈ LN} ⊂ S(LN ),

which implies (1.4). Therefore, by Theorem 1, F and T have a coincidence

point, and hence the conclusion holds. ¤
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Particular forms.

1. Fan [8, Theorem 1′]: X and Y are compact convex subsets of Hausdorff

topological vector spaces. Note that compactness of X is superfluous.

2. Liu [17, Theorem 2]: X is a compact convex subset of a Hausdorff

topological vector space, Y is a convex space.

3. Ha [12, Theorem 1]: X and Y are convex subsets of Hausdorff topological

vector spaces, and a slightly stronger form of the compactness condition is

assumed.

4. Ben-El-Mechaiekh et al [4, Corollaire 3.4]: Same as for Fan [8].

5. Shih and Tan [28, Theorem 7̂]: Same as above.

6. Shih and Tan [29, Theorems 2 and 3]: A non-compact version of the

preceding one.

7. Bielawski [5, (4.12) Proposition]: X and Y are compact spaces having

certain simplicial convexities.

8. Ding [7, Theorem 5.1]: X and Y are C-spaces with a stronger condition

than (3.3).

Note that 1–5 and 7 are the case for S1 = T1, S2 = T2 and 6 and 8 are the

results about four sets as Theorem 3.

Remark. Int Si(z) in Theorem 3 can be replaced by any nonempty com-

pactly open subset of Si(z) for z ∈ X or z ∈ Y .

From Theorem 3, we obtain the following analytic alternative which is the

basis of many minimax theorems:
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Theorem 4. Let (X, Γ) and (Y, Γ′) be Hausdorff G-convex spaces and

f, s, t, g : X × Y → R functions, and a ∈ R satisfying

(4.1) s ≤ t;

(4.2) for each x ∈ X, f(x, ·) is compactly l.s.c. on Y , and A ∈ 〈{y ∈ Y :

g(x, y) < a}〉 implies Γ′A ⊂ {y ∈ Y : t(x, y) < a};
(4.3) for each y ∈ Y , g(·, y) is compactly u.s.c. on X, and B ∈ 〈{x ∈ X :

f(x, y) > a}〉 implies ΓB ⊂ {x ∈ X : s(x, y) > a}; and

(4.4) for each N ∈ 〈X〉, there exists an LN as in Theorem 1 such that {y ∈
Y : f(x, y) ≤ a for all x ∈ LN} is compact in Y .

Then one of the following holds:

(i) There exists an y0 ∈ Y such that f(x, y0) ≤ a for all x ∈ X.

(ii) There exists an x0 ∈ X such that g(x0, y) ≥ a for all y ∈ Y .

Proof. Let

S1 = {(x, y) ∈ X × Y : f(x, y) > a}, S2 = {(x, y) ∈ X × Y : g(x, y) < a},

T1 = {(x, y) ∈ X × Y : s(x, y) > a}, T2 = {(x, y) ∈ X × Y : t(x, y) < a}.

Suppose that the conclusion does not hold. Then for each y ∈ Y , we have

S1(y) 6= ∅; and for each x ∈ X, we have S2(x) 6= ∅. Moreover, each S1(x) and

each S2(y) are compactly open by (4.2) and (4.3). Therefore, (4.2) and (4.3)

imply (3.1) and (3.2) by exchanging the roles of indices 1 and 2. Now we show

that (3.3) also holds. From (4.4),

{y ∈ Y : f(x, y) ≤ a for all x ∈ LN} = {y ∈ Y : y /∈ S1(x) for all x ∈ LN}.

Since each S1(x) is compactly open, by the remark for Theorem 3, condition

(3.3) is satisfied. Therefore, by Theorem 3, we have T1 ∩ T2 6= ∅. This contra-

dicts (4.1). This completes our proof.

¤
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Particular forms. 1. Ben-El-Mechaiekh et al [4, Théorème 5.4]: X and

Y are compact convex spaces. Note that compactness of X is superfluous.

2. Granas [9, 3.1 Théorème et 13.6 Théorème]: X and Y are convex spaces

with stronger compactness condition than ours. The arguments are based on

the KKM theorem.

3. Shih and Tan [30, Theorem 4]: X and Y are convex spaces.

4. Ding [7, Theorem 5.2 and Corollary 5.1]: A C-space version of Theorem

4 and its simple consequence.

3. Von Neumann Type Minimax Theorems

From Theorem 4, we deduce the following von Neumann type minimax the-

orem for G-convex spaces:

Theorem 5. Let (X, Γ) and (Y, Γ′) be Hausdorff G-convex spaces and

f, s, t, g : X × Y → R functions satisfying (4.1)-(4.3) and (4.4) for any a ∈ R.

Then we have

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

Further if f = g, then we have

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

Proof. We may assume that

−∞ < u = inf
y∈Y

sup
x∈X

f(x, y)

and let a < u. Since infy∈Y supx∈X f(x, y) > a, for each y ∈ Y , there exists

an x ∈ X such that f(x, y) > a. Hence the conclusion (i) of Theorem 4 does
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not hold. Therefore, by Theorem 4 (ii), there exists an x0 ∈ X such that

g(x0, y) ≥ a for all y ∈ Y . Since a is arbitrary and a < u, we have

u ≤ sup
x∈X

inf
y∈Y

g(x, y).

This completes the proof of the first part. Further if f = g, then we always

have

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

Therefore, by the first part, we have the minimax equality. ¤

Remark. In Theorem 5, if f = g, we may assume that (4.4) holds for any

a < u whenever −∞ < u = infy∈Y supx∈X f(x, y).

Particular forms. 1. Von Neumann [18] : X and Y are compact convex

subsets of Euclidean spaces and f = g is continuous.

2. Nikaidô [19]: Euclidean spaces in the above are replaced by Hausdorff

topological spaces, and f is continuous in each variable.

3. Sion [32]: X and Y are compact convex spaces and f = g = s = t.

4. Brézis, Nirenberg and Stampachia [6, Proposition 1]: X and Y are convex

subsets of Hausdorff topological vector spaces, f = g and assumed that

(4.4)′ for some x̃ and some λ > supx∈X infy∈Y f(x, y), the set {y ∈ Y :

f(x̃, y) ≤ λ} is compact,

instead of (4.4).

We show that (4.4)′ implies (4.4) for any a < u as in Remark. In fact, for

any N ∈ 〈X〉, let LN = co({x̃} ∪N). Note that {y ∈ Y : f(x, y) ≤ a} is closed

since f(x, ·) is l.s.c. for each x ∈ X by (4.2). therefore

{y ∈ Y : f(x, y) ≤ a for all x ∈ LN} =
⋂

x∈LN

{y ∈ Y : f(x, y) ≤ a}
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is a closed subset of the compact set {y ∈ Y : f(x̃, y) ≤ λ} since x̃ ∈ LN and

a < u < λ. Therefore, (4.4)′ ⇒ (4.4).

5. Liu [17, Theorem 1]: X and Y are convex spaces, Y is compact, and

f = s, t = g.

6. Komiya [14, Theorem 3]: X and Y are compact convex spaces in the

sense of Komiya, and f = g.

7. Ben-El-Mechaiekh et al [4, Corollaire 5.5]: X and Y are compact convex

spaces. Note that compactness of X is superfluous.

8. Lassonde [15, Theorem 1.11]: X and Y are convex spaces and f = s,

t = g.

9. Simons [31, Theorem 1.4 and Corollary 1.5]: X and Y are convex spaces,

Y is compact, and f = s, t = g.

10. Shih and Tan [29, Theorems 4 and 5]: X and Y are convex spaces.

11. Bielawski [5, (4.13) Theorem]: X and Y are compact spaces having

certain simplicial convexities, and f = g.

12. Granas [9, 3.1 et 3.2 Théorèmes] : X and Y are convex spaces and Y is

compact.

13. Horvath [13, Proposition 5.2]: X and Y are C-spaces, Y is compact,

and f = g.

14. Ben-El-Mechaiekh [3, Corollary 7]: A particular form of Theorem 5

slightly extending the result of Brézis et al. [6].

15. Guillerme [11, Théorèmes IV.2 et V.2]: Particular forms of Theorem 5

for convex spaces X and Y .

16. Ding [7, Theorem 5.3 and Corollary 5.2]: A C-space version of Theorem

5 and its simple consequence.
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Let (X,D; Γ) be a G-convex space, Y a set and f : D×Y → R, g : X×Y → R

be two functions. g is said to be f -qausiconcave on X if for any A ∈ 〈D〉 and

for each y ∈ Y ,

g(z, y) ≥ min
x∈A

f(x, y) for all z ∈ ΓA.

It is clear that if D = X, f ≤ g on X × Y and for each y ∈ Y , the function

x 7→ f(x, y) or x 7→ g(x, y) is quasiconcave, then g is f -quasiconcave on X. See

Balaj [2].

T ∈ V(X,Y ) ⇐⇒ for topological spaces X and Y , a multimap T : X ( Y

is u.s.c. with compact acyclic values.

Note that V(X, Y ) ⊂ Aκ
c (X, Y ).

The following lemma is a particular case of Corollary for V of Aκ
c in [26].

Lemma. Let (X, D; Γ) be a G-convex space, Y a Hausdorff space, F ∈
V(X, Y ) and H : X ( Y such that, for any N ∈ 〈D〉, F (ΓN ) ⊂ H(N). Then

the family {H(x) : x ∈ D} has the finite intersection property.

Let X and Y be two topological spaces. A function f : X × Y → R is said

to be transfer lower semicontinuous or transfer l.s.c. in the second variable

[16, 34] if for each a ∈ R and all x ∈ X, y ∈ Y with f(x, y) > a, there exists a

x′ ∈ X and a neighborhood V (y) of y such that f(x′, z) > a for all z ∈ V (y).

Note that if F is transfer l.s.c. in the second variable, then
⋂

x∈X{y ∈ Y :

f(x, y) ≤ a} =
⋂

x∈X {y ∈ Y : f(x, y) ≤ a}, see Tian [33].

Theorem 6. Let (X, D; Γ) be a G-convex space, Y a Hausdorff compact

space, f : D × Y → R, g : X × Y → R two functions and a ∈ R satisfying

(6.1) g is l.s.c. on X × Y ;

(6.2) g is f -quasiconcave on X;

(6.3) for each x ∈ X, the set {y ∈ Y : g(x, y) ≤ a} is acyclic or empty; and

(6.4) for each x ∈ D, f(x, ·) is transfer l.s.c. in the second variable.
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Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

min
y∈Y

g(x, y).

Proof. Since g(x, y) is l.s.c. on Y , miny∈Y g(x, y) exists for each x ∈ X. We

may assume that v = supx∈X miny∈Y g(x, y) < ∞. and let a > v. Define the

multimaps F : X ( Y , H : D ( Y by

F (x) = {y ∈ Y : g(x, y) ≤ a}, H(x) = {y ∈ Y : f(x, y) ≤ a}.

Note that
⋂

x∈D H(x) =
⋂

x∈D H(x) and for each x ∈ X, F (x) is nonempty

acyclic.

Since g is l.s.c. on X × Y , GrF is closed in X × Y , hence F has closed

values. Since Y is compact, F is u.s.c. and thus F ∈ V(X,Y ). By (6.2),

for each A ∈ 〈D〉, F (ΓA) ⊂ H(A). By Lemma, {H(x) : x ∈ X} satisfies

the finite intersection property, therefore
⋂

x∈D H(x) =
⋂

x∈D H(x) 6= ∅. i.e.

infy∈Y supx∈X f(x, y) ≤ a for all a > supx∈X miny∈Y g(x, y). Therefore

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

min
y∈Y

g(x, y).

¤

Particular form. Balaj [1, Theorem 3]: X is a convex space and f(x, ·)
is l.s.c. for each x ∈ X.

Corollary 7. Let (X; Γ) be a G-convex space, Y a Hausdorff compact

space, f : X × Y → R a l.s.c. function such that for each a ∈ R, the following

hold:

(7.1) for each y ∈ Y , {x ∈ X : f(x, y) > a} is nonempty and Γ-convex; and

(7.2) for each x ∈ X, the set {y ∈ Y : f(x, y) ≤ a} is acyclic.

Then

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).
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Proof. Since f(x, ·) is l.s.c. on Y , miny∈Y f(x, y) exists for each x ∈ X. Since

supx∈X f(x, y) is l.s.c. on y ∈ Y , being the supremum of l.s.c. function miny∈Y

supx∈X f(x, y) exists. Note that miny∈Y f(x, y) ≤ f(x, y) ≤ supx∈X f(x, y) for

all x ∈ X and y ∈ Y . Therefore, we have

sup
x∈X

min
y∈Y

f(x, y) ≤ min
y∈Y

sup
x∈X

f(x, y).

The equality holds by Theorem 6. ¤

Particular forms. 1. von Neumann [18]: X and Y are compact convex

subsets of Euclidean spaces, f is continuous and Γ-convexity and acyclicity are

replaced by convexity.

2. Some related results are given in Park et al. [24].

4. Systems of Γ-convex Inequalities

Let X be a set and F = {f}, G = {g} two families of real functions on X.

we denote F ≤ G if and only if for each f ∈ F , there exists a g ∈ G such that

f(x) ≤ g(x) for each x ∈ X.

A family H = {h} of real functions on X is said to be concave whenever

for each h1, h2, · · · , hn ∈ H and each α1, α2, · · · , αn ∈ [0, 1] with Σn
i=1αi = 1,

there exists an h ∈ H satisfying

h(x) ≥ Σn
i=1αihi(x) for each x ∈ X;

see Pietsch [27, p.40].
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Theorem 8. Let (X; Γ) be a Hausdorff G-convex space, and F ,G,H three

collections of real valued functions on X. Suppose that

(8.1) F ≤ G ≤ H;

(8.2) each f ∈ F is compactly l.s.c. on X;

(8.3) each convex combination of functions in G is quasiconvex;

(8.4) H is concave; and

(8.5) there exists a nonempty compact subset K of X and for each λ ∈ R such

that for each x ∈ X\K and each convex combination f of functions in

F , we have f(x) > λ.

Then the following minimax inequality holds:

min
x∈K

sup
f∈F

f(x) ≤ sup
h∈H

inf
x∈X

h(x).

Proof. Let a = suph∈H infx∈X h(x) and assume a < ∞. For each f ∈ F , let

S(f) = {x ∈ K : f(x) ≤ a}, which is closed in K, since f is compactly l.s.c. If

the family {S(f) : f ∈ F} has the finite intersection property, the compactness

of K implies the conclusion. Let {f1, f2, · · · , fn} ⊂ F . Choose {gi}n
i=1 ⊂ G

and {hi}n
i=1 ⊂ H so that fi ≤ gi ≤ hi for each i. Define f̄ , ḡ : ∆n−1 ×X → R

by

f̄(α, x) = Σn
i=1αifi(x) and ḡ(α, x) = Σn

i=1αigi(x)

for (α, x) ∈ ∆n−1 ×X. Then

(1) f̄ ≤ ḡ by definition;

(2) for each α ∈ ∆n−1, f̄(α, ·) is compactly l.s.c. on X (since each fi(·) is

compactly l.s.c. by (8.2)), and A ∈ 〈{x ∈ X : ḡ(α, x) < a}〉 implies ΓA ⊂ {x ∈
X : ḡ(α, x) < a} by (8.3);

(3) for each x ∈ X, ḡ(·, x) is u.s.c. (in fact, α 7→ Σn
i=1αigi(x) is continuous

on ∆n−1), and B ∈ 〈{α ∈ ∆n−1 : f̄(α, x) > a}〉 implies coB ⊂ {α ∈ ∆n−1 :

f̄(α, x) > a}; and
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(4) for each N ∈ 〈∆n−1〉, by putting LN = ∆n−1, we have

⋂

α∈∆n−1

{x ∈ X : f̄(α, x) ≤ a} ⊂ K

by (8.5). Therefore the requirements of Theorem 5 replacing (X,Y ) by (∆n−1, X)

are all satisfied for f̄ = s and t = ḡ. Hence we have infx∈X supα∈∆n−1
f̄(α, x) ≤

supα∈∆n−1
infx∈X ḡ(α, x). On the other hand, there exists an h ∈ H such that

ḡ(α, x) = Σn
i=1αigi(x) ≤ Σn

i=1αihi(x) ≤ h(x)

for all x ∈ X by (8.4).

Therefore supα∈∆n−1
infx∈X ḡ(α, x) ≤ suph∈H infx∈X h(x) = a. Conse-

quently, there exists an x0 ∈ X such that f̄(α, x0) = Σn
i=1αifi(x0) ≤ a for

all α ∈ ∆n−1.

This clearly implies fi(x0) ≤ a for each i, and x0 ∈ K by (8.5). Hence we

have

x0 ∈
n⋂

i=1

S(fi).

¤

Particular forms. 1. Granas and Liu [10, Theorem 9.2]: X is a compact

convex space.

2. Shih and Tan [30, Theorem 7]: X is a normal closed convex space.

3. Balaj [1, Theorem 5] is compact acyclic case of Theorem 8 with a super-

fluous condition that g ∈ G is l.s.c.

Theorem 9. Under the hypothesis of Theorem 8, given any a ∈ R, one of

the following holds:

(i) There is an h ∈ H such that infx∈X h(x) > a.

(ii) There is an x0 ∈ K such that f(x0) ≤ a for all f ∈ F .

Note that (ii) is equivalent to the following:

(ii)′ For each h ∈ H, there exists an x ∈ X such that h(x) ≤ λ.



Generalized minimax theorems in Generalized Convex Spaces 575

Theorem 10. Let (X; Γ) be a Hausdorff G-convex space, Y a set, λ ∈ R
and f, g, h : X × Y → R functions. Suppose that

(10.1) f(x, y) ≤ g(x, y) ≤ h(x, y) for (x, y) ∈ X × Y ;

(10.2) x 7→ f(x, y) is compactly l.s.c. on X for each y ∈ Y ;

(10.3) for each {y1, y2, · · · yk} ∈ 〈Y 〉 and each α = (α1, α2, · · · , αk) ∈ ∆k−1,

the function x 7→ Σk
i=1αig(x, yi) is quasiconvex;

(10.4) the family {h(·, y)}y∈Y is concave; and

(10.5) there exists a nonempty compact subset K of X and for any λ ∈ R
such that for each x ∈ X\K, {y1, y2, · · · yk} ∈ 〈Y 〉 and α ∈ ∆k−1, we

have Σk
i=1αif(x, yi) > λ.

Then we have the following:

(a) either

(i) there exists an y0 ∈ Y such that h(x, y0) > λ for all x ∈ X; or

(ii) There exists an x0 ∈ K such that f(x0, y) ≤ λ for all y ∈ Y .

(b) The following minimax inequality holds:

min
x∈K

sup
y∈Y

f(x, y) ≤ sup
y∈Y

inf
x∈X

h(x, y).

Proof. Apply Theorems 8 and 9 when F = {f(·, y)}y∈Y ,G = {g(·, y)}y∈Y

and H = {h(·, y)}y∈Y . ¤

Remark. In Theorem 10, by putting f = g or g = h, we obtain two other

minimax theorems for two functions.

In case f = g = h in Theorem 10, we obtain following generalizations of the

well known minimax theorems due to Ky Fan, Nikaido, and Kneser:
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Theorem 11. Let (X; Γ) be a Hausdorff G-convex space, Y a set, and

f : X × Y → R a function such that x 7→ f(x, y) quasiconvex, and compactly

l.s.c. on X for each y ∈ Y , and (10.5) holds. Suppose that one of the following

conditions holds:

(i) (Ky Fan) the family {f(·, y)}y∈Y is concave;

(ii) (Nikaido) Y is a convex subset of a vector space and y 7→ f(x, y) is

concave on Y for each x ∈ X;

(iii) (Kneser) Y is a vector space and y 7→ f(x, y) is affine on Y for each

x ∈ X;

Then we have:

(a) For each λ ∈ R, either

(i) there exists an y0 ∈ Y such that f(x, y0) > λ for all x ∈ X; or

(ii) there exists an x0 ∈ K such that f(x0, y) ≤ λ for all y ∈ Y .

(b) The following minimax equality holds:

min
x∈K

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).
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