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A GENERALIZED MINIMAX INEQUALITY
RELATED TO ADMISSIBLE MULTIMAPS
AND ITS APPLICATIONS

SEHIE PARK

ABSTRACT. From a minimax inequality related 1o admissible mul-
timaps, we deduce generalized versions of lopsided saddle point the-
orems, fixed point theorems, existence of maxim zable linear func-
tionals, the Walras excess demand theorem, and the Gale-Nikaido-
Debreu theorem.

0. Introduction

In the frame of the KKM theory, the author [15, Theorem 11] ob-
tained a far-reaching generalization of the Ky Fan minimax inequality
related to the admissible classes of multimaps. It was first used to
establish the fixed point theory of admissible maps in [14], and then
applied to the Karamardian type variational inequalities and general-
ized complementarity problems iu [16]. On the other hand, in [17], we
introduced the “better” admissible class B of multimaps and obtained
a basic coincidence theorems for B as well as a rnatching theorem and
a KKM theorem.

In the present paper, we obtaii & new minimax or equilibrium the-
orem (Theorem 1) involving a map in B and apply it to some other
problems.

In section 2. we obtain a refined version (Theorem 3) of a lopsided
saddle point theorem in [14], which is applied to ¢btain a Browder type
fixed point theorem (Theorem 4) in section 3. Moreover, in section
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4, we deduce a generalization (Theorem 5) of the existence theorem
of maximizable linear functionals due to Simons. Finally, section 4
deals with generalized forms of the Walras excess demand theorem
(Theorems 6 and 7) and the Gale-Nikaido-Debreu theorem (Theorem
8).

All results in this paper can be stated with respect to admissi-
ble class A of multimaps, which include contintous (single-valued)
functions, Kakutani maps, Aronszajn maps, acyclic maps, Gérniewicz
maps, Dzedzej maps, approximable maps, and others which frequently
appear in nonlinear analysis and algebraic topology.

1. Preliminaries

A conver space is a nonempty convex set (in a vector space) equipped
with any topology that induces the Euclidean topology on the convex
hulls of its finite subsets. Such convex hulls are called polytopes; see
Lassonde [11].

Recall that an extended real-valued function f : X — R on a topo-
logical space X is lower [ resp. upper | semicontinuous (l.s.c. | resp.
u.s.c. |) whenever {x € X | fo > r} [resp. {x € X|fx <r}]is open
for each 7 € R. If X is a convex space, then f is quasiconcave [ resp.
quasiconver | whenever {& € X | for > r} [resp. {v € X |frx <r}]is
convex for each 7 € R.

For topological spaces X and Y, a multimap or a mapT : X —o Y
is a function from X into the set of nonempty subsets of Y. A map
T:X — Y is upper semicontinuous (w.s.c.) if, for each open subset
G of Y, the set {& € X |Tax C G} is open in X lower semicontinuous
(Ls.c.) if, for each closed subset /" of Y, the set {x € X |Tx C F}
is closed in X; continuous if it is w.s.c. and Ls.c.; and compact if the
range T(X) = {y € Y|y € Tx for some r € X} is contained in a
compact subset of Y. As usual, the set {(x,y) |y € Tz} is called either
the graph of F or, simply, F.

Recall that a nonempty topological space is acyclic if all of its re-
duced Cech homology groups over rationals vanish.

An admissible class A5(X,Y) of maps T : X —o Y is one such
that, for each T and each compact subset K of X. there exists a map
' e A(K.Y) satisfying I'e € Tr for all » € K; where 2, is consisting
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of finite composites of maps in A, and 2 is a class of maps satisfying
the following properties:
(1) A contains the class C of (single-valued) continuous functions:

(ii) each F € 2, is u.s.c. and compact-valued; and

(iit) for any polytope P, each F € (P, P) has a fixed point.

Examples of 2 are continuous functions C, the Kakutani maps K
(with convex values and codomains are convex spaces), the Aronszajn
maps M (with Rs values), the acyclic maps V (with acyclic values), the
Powers maps V., the O’Neill maps N (continuous with values of one or
m acyclic components, where m is fixed), the approachable maps A in
topological vector spaces, admissible maps of Gdrniewicz, permissible
maps of Dzedzej, and many others. Note that V7 due to Park, Singh
and Watson, and K7 due to Lassonde are examples of A%. For details,
see [14-16, 19].

More recently, the approximable maps A®(X,Y) is due to Ben-El-
Mechaiekh and Idzik [2], where X and Y are subsets of topological
vector spaces. They noted that if X is a closed subset of a locally con-
vex Hausdorfl topological vector space, then any u.s.c. compact map
T : X — X with closed values belongs to A® whenever the functional
values are all (1) convex, (2) contractible, (3) decomposable, or (4)
oo-proximally connected.

Let X be a convex space and Y a Hausdorif space. In [17], we
introduced a new “better” admissible class B of multimaps as follows:

FeB(X,Y)<= F:X —Y such that, for any polytope P in X
and any continuous map f : F(P)— P, f(F|p) has a fixed point.

Moreover, we defined one more class of multiraps as follows:

F € B®(X,Y) <= for any comnpact convex subset K of X, there is
a closed map I' € B(K,Y) such that 'z C Fx for each r € K.

Our new classes contain the admissible class 215 properly.

The following KKM theorem is due to the author [17, Theorem 3]:

THEOREM 0. Let X be a couvex space, Y a Hausdorfl space, F' €
B(X.,Y) a compact map, and S X — Y a map. Suppose that

(0.1) for each x € X, Sx is closed; and

(0.2) for each N € (X), F(coN) C S(N).

Then F(X)N{\{Sr:2 € X} #{.
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Here, (X) denotes the set of all nonempty finite subsets of X.

2. Basic minimax inequalities

We begin with the following minimax inequality equivalent to The-
orem ()

THEOREM 1. Let X be a convex space, Y a Hausdorff space, F €
B(X.Y) a compact map, f,g : X x Y — R extended real-valued
functions, and v € R. Suppose that

(1.1) foreach x € X, {y € Y| f(o,y) <~} is closed;
(1.2) for each N € (X) and y € F(coN), min{g'r.y)|x € N} < ~;
and

(L3) flr.y) <g(r.y) forall (r,u) € X xY.

Then (a) there exists a § € F(X) such that
fle,g) <~ forall re X;

and (b) if v = sup{g(z,y)|(z,y) € F}, then we have the minimax
inequality:

min_sup f(r,y) < sup g(z,y).
yeEF(X)reX (ry)er

Proof of Theorem 1 using Theorem . Foreachx € X, let Sz = {y €
Y| f(z,y) <~} Then Sris closed by (1.1). We show that (0.2) holds.
Suppose that there exists an N € (X) such that F(coN) ¢ S(N).
Choose a y € F(co N) such that y ¢ S(N), whence g(z,y) > f(x,y) >
v for all # € N. Then min.en g(,y) > 7, which contradicts (1.2).
Therefore, all of the requirements of Theorem () are satisfied, and hence
there exists a § € F'(X) such that § € Sz for all z € X. This completes
the proof of (a). Note that (b) clearly follows from (a). O

Proof of Theorem 0 using Theorem 1. Define f = g: X xY — R
by
0 ifye Se
flry) = =2
1 otherwise
for (x,y) € X xY, and let v+ = 0 Then (0.1) clearly implies (1.1).
We show that (0.2) implies (1.2). In fact, suppose that there exist an
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N € (X) and a y € F(coN) such that min{f(z,y)|r € N} > 0. Then
y ¢ Sz for all » € N; that is, F(coN) ¢ S(.V), which contradicts
(0.2). Therefore, all of the requil_‘ements of Theorem 1 are satisfied,

and hence there exists a § € F((X) such that f(2,9) = 0 for all 2 € X:
that is, g € ({Sz : © € X}. This completes our proof. O

Theorem 1 is a far-reaching generalization of the celebrated minimax
inequality of Ky Fan [7] and includes a large number of particular
known forms: for example, [22, Theorem 2.11] and [4, Corollary 3.5].
Note that if T is single-valued, then the Hausdorffness assumption on
Y is not necessary; see [15].

A particular form of Theorem 1 is applied in [18] to obtain existence
theorems of solutions of variational inequalities.

From Theorem 1, we deduce the following result on lopsided saddle
points:

THEOREM 2. Let X be a compact convex space, Y a Hausdorff
space, and T € B(X,Y) a closed compact map. Let ¢ : X xY — R
be a continuons function such that for each y € Y, v — ¢(x,y) is
quasiconvex on X. Then there exists an (xg,yo) € T such that

d(ro,yo) < d(x,yg) forall »e X.
Proof. Define f: X xY — R by
flz.y) = min ¢(z, y) — olw, )
for (r,y) € X x Y. Then f is continuous on X x Y [, p.70] and

satisfies (1.1)-(1.3) of Theorem 1 with f = g. Therefore, by Theorem
1, there exists a gy € T(X) such that

sup f(r.9) < sup fa.y).
reX (ry)eT

Since x — ¢(x,9) is continuous cn the compact set X, there exists an
7 € X such that ¢(4,7) = min,-x ¢(z,9) or f{Z,9) = 0. Hence, we
have

0< sup f(r.y).
(w0 )ET
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Since the graph of T is closed and hence compact ir X x Y, the supre-
mum in the above inequality is attained on some (zg,y0) € T. This
completes our proof. O

Note that, in Theorem 2, a closed compact map T € B(X,Y) can
be replaced by a compact map 7' € B*(X,Y), amap T € A5 (X.Y) or
amap T € ™A (X,Y). In the following, we use mainly the class " for
the simplicity.

ExamMpLES. 1. Ky Fan [7, Corollary 1]: X =Y and T = 1. where
the Hausdorffness assumption is superfluous. Moreover, for a normed
vector space F' =Y, X C E, T : X — E, and o(r,y) = |a — y|.
Theorem 2 reduces to Fan [6, Theorem 2], which is usually called a
best approximation theorem.

2. Ha [10, Theorem 2]: Y is a nonempty compact convex subset of
a Hausdorff topological vector space and T' € K(X, Y). Ha applied his
theorem to obtain fixed point theorems for Kakutani maps.

3. Park [13, Theorem 2]: This is the case T € Vi X,Y) and applied
to obtain fixed point theorems for acyclic maps. In [14], Theorem 2 is
applied to obtain results for admissible maps.

4. Recently, in our work {16], Theorem 2 is apgplied to generalized
equilibrium problems and generalized complementarity problems.

For a subset X of a topological vector space F) and x € FE, the
inward and outward sets of X at x, Ix(r) and Ox(r), are defined by
Ix(r)={e+r(u—2 € Elue X, r >0},
Ox(r)={e—r(u—a € Elue X, r>0},

resp. Their closures are called weckly inward and outward sets, and
denoted I x(z) and Ox (), resp.

The following slightly weaker form (with “quasiconvex” replaced by
“convex” } of Theorem 2 is useful in various problers:

THEOREM 3. Let X be a compact convex subset of a topological
vector space I, Y a Hausdorff space. and T € AF(X,Y). Let ¢ - E x
Y — R be a continuous function such that for each y € Y, x — &(x,y)
is convex on E. Then there exists an (v, yo) € T such that

d(ro,y0) < d(x,y0) forall x € Ixixg).



=3
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Proof. From Theorem 2, there exists an (2, 19) € T such that

dlro, yo) < @, yo) forall == X,

For v € Ix(xp)\X, there exist v« € X and r > 1 such that »
xg -+ 1r(u —rg). Suppose that ¢(i.yo) < ¢(rp, yo). Since

1 , |
—r 4l = g =ue X
.

r

and ¢(-.yp) is convex. we have

1 . I
olugo) = —oleyo) + (1~ )00 yo) < dlro. o).
Thercfore, ¢(rg,y0) < @(a. yo) holds for
0

which 1s a contradiction.
x € Ix(xo): that is, for all x € Iy (xg).

shown to imply Tychonofl's fixed point theorem.
2. Park [12. Theorem 1]: ¥ = F and T : X <~ E. This was applied
to obtain fixed point theorems fo- weakly inward maps.

3. Fixed point theorems
From Theorem 3, we immediately deduce the following:

THEOREM 4. Let X be a compact convex subset of a Hausdorff
topological vector space E. T € A5 X,E), and 4 £ x F — R be a
continnous function such that for each y € E, a +— ¢(r.y) is convex
on I, Suppose that for any r € X satisfving x ¢ Tx, there exists a

z & Iy () such that

Ozoy) < olroyr forall yée .

Then T has a fixed point rg € X that is, xg € Txy.
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Proof. From Theorem 3 with Y = FE, there exists an (xp,y9) € T
such that 3
O, yo) < dlx,yo) forall @€ I'x(xg).

Suppose that 2o € Tp. Then, by hypothesis, there exists a z € I x (irg)
such that ¢(z,y0) < ¢(re,yo0), which is a contradiction. This completes
our proof. 0

REMARK. Let a map 77 : X — FE be given by T"a = 2x — Tz for
re XforT e (X, F) IfT € A(X,F) and ¢(x,y) = ¢(y — )
for a continuous convex function ¢ : £ — R, then the set Ix(x0) in
Theorem 4 can be replaced by Ox: rp) in Theorem 4.

In fact, by Theorem 4, there exists an (xg,yy) € I satisfying v (rg—
y1) < v(a’ —yy) for all 2’ € Ix(zg.. Forr € Ox(ag), let ' = 2xg —
and ¥, = 2xr9 — yo where yo € T'rg. Then we have

d(xo,y0) = V(Yo — o) = Y(xo — Y1)
<@ —y1) = v(yo — =) = o7, yo)

for all # € Ox(xg); and hence, for all + € Ox (70).
We followed the method of Browder [3].

We give examples of Theorem 4 as follows:

ExampLES. 1. Browder [3, Theorems 1 and 2]: F is a locally convex
topological vector space, T = f € C(X.FE), and ¢(z,y) = p(r — y),
where p : E — R is a continuous convex functior.. He also obtained
variants of his theorems employing the concept of subgradient dOh :
E — E* of a convex real function h on E.

2. Park [14. Corollary 3.1]: E is a metrizable topological vector
space where the metric d on F has been chosen sc that balls are con-
vex, and ¢ = d. This extends earliecr works of Brouwer, Schauder,
Cellina, Fan, and Rassias for T' = [ € C(X, F), and of Kakutani and
Bohnenblust-Karlin for 7' € K(X, 17); see [14].

4. Existence of maximizable linear functionals

Let @ be either the real field R or the complex field C. Let E be a
topological vector space over &, E~ its topological dual, and { . ) the
pairing between £~ and E.
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Let X be a compact subset of £. In this secticn, we assume that E*
is equipped with any topology such that the pairing {, ) : E*x X — &
is continuous. For example, the topology of E* can be the uniform
convergence topology on the bounded sets or on the compact sets in

E.

From Theorem 3. we have the following:

THEOREM 5. Let X be a compact convex subset of a topological
vector space E, and T € AN (X E*). If E* is Hausdorff, then there
exists an (g, fo) € T such that

Re(fo,r0) = 1max Re(fo,:).

el x ()

Proof. Let ¢ : E x £ — R be defined by
pla, f) = —Re(f, ) for (r.f)e Ex E*.

Since ¢ is continuous and ¢(-, f) is convex on E by Theorem 3, therc
exists an (rg, fo) € T such that

(o, fo) = nlie o(x, fo).
T
This is equivalent to the conclusion. J

ExamMpLES. 1. If T =t € C{(X, E*) in Theorem 5, we do not need
to assume the Hausdorffness of £7*. This case includes the following:

2. Simons [20, Theorem 4.5]: X is a subset of a real Hausdorff
topological vector space and T': X' — E* has nonempty convex values
and open fibers.

5. Generalized Walras type theorems

From Theorem 1, we obtain the following generalization of the so-
called Walras excess demand theorem:

THEOREM 6. Let X be a couvex space, Y a Hausdorff space, T €

B(X,Y) a compact map, c € R, and ¢.v' : X x Y — R two extended
real-valued functions such that

(1) ol y) < @lr,y) for each (v,y) € X x Y
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(2) foreachxr € X,y ¥(x,y) isu.s.c. onY;
(3) foreachy €Y, x — ¢(x,y) is quasiconvex on X; and
(4) ¢(x,y) > ¢ for all (x,y) € T (Walras law).
Then there exists a Walras equilibrium; that is, there exists a yp € Y
such that
c< ¢lx,yo) forall zeX.

Proof. Use Theorem 1 with f = ~¢ and ¢ = —¢. Then there exists
a § € T(X) such that

(x?;l)fET(b(m,y) < inf Y(x, 7).

This completes our proof. O

EXAMPLE. Granas and Liu [8, Theorem (13.4)]: Y is a convex sub-
set of a topological vector space and T belongs to & particular class of
The following is a different versicn of Theorem €:

THEOREM 7. Let X be a compact convex space, Y a Hausdorff
space, and T € AX(X.Y). Let ¢ : X xY — R be a continuous
function and ¢ € R such that

(1) foreachy € Y, x> ¢(x,y) is quasiconvex on X; and

(2) ¢(x,y) > c for all (x,y) € T (Walras law).

Then there exists a Walras equilibrinm; that is, there exists an
(zo,y0) € T such that

¢ < ¢(zg,yo) < ¢, o) forall o e X,
Proof. Immediate from Theorem 2. O

ExaMPLES. 1. Gwinner [9, Theorem 8|, Zeidler [21, Theorem 77.E]:
X and Y are compact convex subsets of locally convex Hausdorff topo-
logical vector spaces and T € K(X,Y').

2. Granas and Liu [8, Theorem (13.5)]: Y is a convex subset of
a Hausdorff topological vector space and T : X — Y a map with
nonempty convex values and open fibers. Note that T' € CF(X,Y).

From Theorem 7, we deduce the following generalization of the Gale-
Nikaido-Debreu theorem:
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THEOREM 8. Let (E,F,(, )) be a dual system of Hausdorff topo-
logical vector spaces E and F', where the real bilinear form ( , ) is
continuous on compact subsets of E x F. Let X be a nonempty com-
pact convex subset of E, P the convex cone | J{rX : r > 0}, and
Pt ={y e F:{(p,y) >0, pe P} its positive dual cone. Then for any
map T € AL (X, F) satistying {x,y) > 0 for (x,y) € T, there exists an
7 € X such that Tz N Pt £ 0.

Proof. Since X is compact, we may assume that T € A (X, FE)
without loss of generality. Then Y = T(X) :s compact in F. Let
®: X xY — R be defined by ¢(r,y) = {z,y) for (z,y) € X xY. Then
¢ is continuous. Since ¢ satisfies the Walras law for T with ¢ = 0, by
Theorem 7, there exists an (,%) € T such that

0<(7,y <(r,y) foral zeX,

and hence, for all z € P. Therefore, we have y € P*. This completes
our proof. 0

ExaMPLES. 1. Gwinner [9, Corollary to Theorem 8]: F and F are
locally convex and T € K(X, F)

2. Gale, Nikaido, and Debrew: P ={z € R" : z; >0, 1 <1i < n},
X={reP: a1+ -4z, = |}, the standard (n — 1)-simplex, and
T € K(X,R"). For the references, see [9)].
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