• Title/Summary/Keyword: minimal cost

Search Result 428, Processing Time 0.026 seconds

Replacement Model Following the Expiration of Free RRNMW (무료 재생교체-비재생수리보증이 종료된 이후의 교체모형)

  • Jung, Ki-Mun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.697-705
    • /
    • 2011
  • This paper proposes an optimal replacement policy following the expiration of a free renewing replacement-non-renewing minimal repair warranty. To do so, the free renewing replacement-non-renewing minimal repair warranty is defined and then the maintenance model following the expiration of free renewing replacement-non-renewing minimal repair warranty from the user's point of view is studied. As the criteria to determine the optimality of the maintenance policy, we consider the expected cost rate per unit time from the user's perspective. We derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purposes.

Periodic Replacement Policies with Minimal Repair Cost Limit

  • Yun, W.Y.;Bai, D.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1985
  • Periodic replacement policies are proposed for a system whose repair cost, when it fails, can be estimated by inspection. The system is replaced when it reaches age T (Policy A), or when it fails for the first time after age T (Policy B). If it fails before reaching age T, the repair cost is estimated and minimal repair is then undertaken if the estimated cost is less than a predetermined limit L; otherwise, the system is replaced. The expected cost rate functions are obtained, their behaviors are examined, and ways of obtaining optimal T and L are explored.

  • PDF

Optimal replacement strategy under repair warranty with age-dependent minimal repair cost

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, we suggest the optimal replacement policy following the expiration of repair warranty when the cost of minimal repair depends on the age of system. To do so, we first explain the replacement model under repair warranty. And then the optimal replacement policy following the expiration of repair warranty is discussed from the user's point of view. The criterion used to determine the optimality of the replacement model is the expected cost rate per unit time, which is obtained from the expected cycle length and the expected total cost for our replacement model. The numerical examples are given for illustrative purpose.

  • PDF

The ($\textsc{k}, t_p$) Replacement Policy for the System subject to Two Types of Failure

  • Lee, Seong-Yoon
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.2
    • /
    • pp.144-157
    • /
    • 1999
  • In this paper, we consider a new preventive replacement policy for the system which deteriorates while it is in operation with an increasing failure rate. The system is subject to two types of failure. A type 1 failure is repairable while a type 2 failure is not repairable. In the new policy, a system is replaced at the age of $t_p$ or at the instant the$\textsc{k}^{th}$ type 1 failure occurs, whichever comes first. However, if a type 2 failure occurs before a preventive replacement is performed, a failure replacement should be made. We assume that a type 1 failure can be rectified with a minimal repair. We also assume that a replacement takes a non-negligible amount of time while a minimal repair takes a negligible amount of time. Under a cost structure which includes a preventive replacement cost, a failure replacement cost and a minimal repair cost, we develop a model to find the optimal ($\textsc{k},t_p$) policy which minimizes the expected cost per unit time in the long run while satisfying a system availability constraint.

  • PDF

주기적 예방보전의 최적정책에 관한 연구

  • Na Myeong Hwan;Son Yeong Suk;Kim Mun Ju
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.115-120
    • /
    • 2005
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal period time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost rate per unit time. Finally, it suppose that the failure time of a system has a Weibull distribution as an example and we obtain an expected cost rate per unit time the optimal period time and the number when cost of replacement and cost of minimal repair change.

  • PDF

The Optimal Limit of the Number of COnsecutive Minimal Repairs

  • Jongho Bae;Lee, Eui-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.89-98
    • /
    • 2001
  • Brown and Proschan(1983) introduced a model for imperfect repair. At each failure of a device, with probability p, it is repaired completely or replaced with a new device(perfect repair), and with probability 1-p, it is returned to the functioning state, but it is only recovered to its condition just prior to failure(imperfect repair or minimal repair). In this paper, we limit the number of consecutive minimal repairs by n. We find some useful properties about $\mu$$_{k}$, the expected time between the k-th and the (k+1)-st repair under he assumption that only minimal repairs are performed. Then, we assign cost to each repair and find the value of n which minimized the long-run average cost for a fixed p under the condition that the life distribution F os the device is DMRL.L.

  • PDF

A Periodic Replacement Model with Random Repair Costs and Threshold Levels (확률적 수리비용과 임계수준을 고려한 주기적 교체 모형에 관한 연구)

  • Gang Yeong-Gil;Gang Seong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.114-125
    • /
    • 1992
  • A policy of periodic replacement with minimal repair at failure is considered for a complex system. Under such a policy the system is replaced at periodic times. iT(i=1,2, $\ldots$), while minimal repair is performed at any intervening system failures. The cost of the j-th minimal repair to the component which fails at age t is g(C(t). $c_j$ (t)), where C(t) is the age-dependent random part, $c_j$(t) is the deterministic part which depends on the age and the number of the minimal repair to the component, and g is a positive nondecreasing continuous function. The cost of replacement is expensive when the number of failures occurring in (0. T) is greater than a threshold level. The problem of determining the optimal replacement period, $T^{\ast}$, which minimizes the total expected cost per unit time over an infinite time horizon is considered. Various special cases are considered.

  • PDF

A Joint Optimization of Ordering and Replacement Policy Under Minimal Repair (최소수리가 가능한 시스템의 주문 및 교체정책 통합 최적화)

  • Ihn, Jae-Soon;Kim, Jun-Hong;Chon, Ho-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • Maintaining a complex repairable system can be achieved by repairing, replacing, or any other activities. This paper proposes a joint optimization policy that is composed with ordering and replacing under minimal repair for the complex system. For this purpose, we derive the expected cost due to the minimal repair, ordering, downtime, inventory costs, and salvage value of units that follow generally distribution. Some properties about the optimum ordering policy that are suggested for our purpose shows that the optimum ordering policy minimizing the expected cost is either one of the two typical policies : (1) the original unit is replaced as soon as the ordered spare is delivered, or (2) the delivered spare is used as inventory part until the original unit fails.

Preventive Replacement Policy under Increasing Minimal Repair Costs at Failure (수리비용이 증가할 때의 수리 사용 후 교환정책)

  • Park Sung-Bum;Kim Young-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.139-153
    • /
    • 2006
  • This paper deals with two forms of preventive replacement policy with minimal repair at failure. Those are, 1. the replacement policy I based on the cumulative operating time. 2. the replacement policy II based on the number of failures. The basic assumptions are; (1) the cost of minimal repair at failure is increasing with the number of failures since the last replacement, (2) the equipment fails stochastically with time.

Optimal replacement policy following the expiration of payable RRNMW (유료 재생교체-비재생수리보증이 종료된 이후의 최적의 교체정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.409-417
    • /
    • 2011
  • In this paper, we consider a replacement model following the expiration of warranty. In other words, this paper proposes the optimal replacement policy for a repairable system following the expiration of payable renewing replacement-non-renewing minimal repair warranty. The expected cost rate per unit time from the user's perspective is used to determine the optimality of the replacement policy. Thus, we derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purpose.