• Title/Summary/Keyword: milling yield

Search Result 102, Processing Time 0.033 seconds

A Study on the Changes in Grain Weight, Moisture Content, Shattering Force, Milling Ratio and Apparant Physical Quality of Rice with Harvesting Time (수도의 수확적기결정을 위한 기초적 연구)

  • Yong-Woong Kwon;Jin-Chul Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 1980
  • To determine the optimum harvest time of recent rice varieties from Indica/Japonica remote crosses, leading varieties Suweon 264 and Milyang 23 were tested for the changes in dry matter weight and moisture content of grain, shattering, shelling ratio, milling ratio, and apparant physical quality during grain development at 5 day-intervals from 20 days to 55 days after heading. The results are summarized as follows: 1. Grain weight (dry matter) reached its maximum (physiological maturity) at 30 days after flowering (DAF) in Suweon 264, and at 35 days in Milyang 23, and thereafter it did not change significantly until 55 DAF. 2. Time course of decrease in grain moisture content (Y, %) during maturation (X, DAF) consisted of two linear phases, i.e. a fast and a slow period: Y=68.245-1.33X until 34DAF, and Y=23.025-0.470X until 55DAF after 34DAF in Suweon 264; Y=73.62-1.634X until 24.5DAF, and Y=33.59-0.570X until 55DAF after 24.5DAF in Milyang 23. Two varieties showed the same grain moisture content of 28% (wet basis) at physiological maturity in spite of the distinct differences in the heading date, time of physiological maturity and thereby ripening climate. 3. Force to shatter a grain ranged about 90 to 100g in Milyang 23, and about 200 to 250g in Suweon 264 and in a Japonica variety, Jinheung. The force, however, did not change significantly with harvest time from 35DAF to 50DAF. 4. The changes in the ratios of shelling, milling, broken rice and tinted rice with harvest time were insignificant during a period from 35DAF to 55DAF. However, ratios of green rice and white belly rice decreased significantly with delay in harvest time during 10 days after physiological maturity. 5. The best time of harvest for maximum yield and good quality is thought to be 10 days after physiological maturity, and grain moisture content at this time was about 20% on wet basis.

  • PDF

Antioxidant Compounds and Antioxidant Activities of the Methanolic Extracts from Milling Fractions of Black Rice (흑미의 도정분획 메탄올 추출물의 항산화 성분 및 항산화 효과)

  • Kong, Suh-Yun;Choi, Young-Min;Lee, Seon-Mi;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.815-819
    • /
    • 2008
  • The colored rice, particularly black rice, has been well characterized to possess antioxidant properties. Rice bran, a by-product of the rice milling process, contains high levels of several phytochemicals which have antioxidant activities as well as health-beneficial properties. The purposes of this study were to evaluate the antioxidant compounds and antioxidant activities of the methanolic extracts from milling fractions and whole grain of two black rice cultivars. Whole black rice of the two cultivars were milled into rice bran and endosperm using the gradual milling system. These were evaluated for antioxidative activities by DPPH and ABTS radical scavenging activities. To determine the antioxidant compounds in the methanolic extract from the milling fractions, the content of polyphenolics, flavonoids, anthocycanins and ${\gamma}$-oryzanol were measured by spectrophotometric methods and vitamin E analysis was carried out by HPLC. The yield of whole black rice, rice bran, and endosperm were 3.1, 15.3, and 0.9% for Heugjinjubyeo and 2.7, 15.5, and 1.1% for Heugkwangbyeo, respectively. The methanolic extracts from rice bran showed generally higher antioxidant activities than the extracts from whole grain and endosperm. In addition, antioxidant compounds distributed much higher contents in rice bran extract than in the extracts from whole grain and endosperm. A significant correlation was also noted between free radical scavenging activity and polyphenolic compounds. The results of this study show that notable antioxidant activity in black rice bran are considered to have significant health benefits.

Optimum N-fertilization Level for Quality Rice Production in the Southern Alpine Area of Korea (남부 산간고랭지에서 쌀 품질 향상을 위한 적정 질소시비량)

  • Kim, Sang-Su;Choi, Weon-Young;Nam, Jeong-Kwon;Lee, Jun-Hee;Back, Nam-Hyun;Park, Hong-Kyu;Choi, Min-Kyu;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.30-34
    • /
    • 2006
  • The effect of N-fertilization on yield, milling characteristics and quality of Samcheonbyeo, an early maturing rice variety, was investigated in 2002 to 2004. The study was carried out in the southern alpine area of Un-bong Sub-Station, Honam Agricultural Research Institute. Higher nitrogen levels increased number of panicle and grain per unit area, but lowed ripening rate and decreased 1,000-grain weight. Higher nitrogen levels of up to 90 kg/ha also increased head rice yield. A nitrogen level of 90 kg/ha was found optimal for increasing ripening rate and head rice yield, and rice palatability.

Effects of Particle Size and High Pressure Process on the Extraction Yield of Oil Compounds from Soybean Powder Using Hexane and Supercritical Fluid (입자 크기와 초고압 처리에 따른 유기용매와 초임계 유체 추출법에서의 대두유 추출수율의 변화)

  • Yoon, Won-Byong
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • Effects of particle size and high pressure processing on the extraction rate of oil compounds from soybean powder were evaluated by Soxhlet method using hexane and supercritical fluid extraction (SFE) using $CO_{2}$. SFE was carried out at 4,000 psi and $50^{\circ}C$ for 4 hr. The mean particle sizes were varied from 26.7 to 862.0 ${\mu}m$ by controlling milling time. Saturation solubility increased as the particle size decreased. At large particle size, high pressure processing (HPP) showed higher extraction yield in both hexane extraction and SFE, but, as the particle size decreased, the HPP was irrelevant to the extraction yield in SFE. The higher extraction rate obtained from the smaller particle size. The scanning electronic microscopy of soybean powder treated by HPP showed pores on the surface of the particle. The higher extraction rate and yield from HPP treatment might be due to the less internal resistance of transferring the solvent and miscellar in the solid matrix by collapsing of tissues.

Effect of Silicate Application on Grain Quality and Storage Characteristics in Rice (규산질 비료 시용이 쌀 품질 및 저장 특성에 미치는 영향)

  • Won, Jong-Gun;Kim, Se-Jong;Ahn, Duok-Jong;Seo, Young-Jin;Choi, Chung-Don;Lee, Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.31-36
    • /
    • 2008
  • This study was carried out to clarify the effect of silicate application on rice grain quality and storage characteristics in Ilpumbyeo cultivar. In yield and yield components, panicles and spikelet numbers were increased and ripened grain rate was also increased by 2%. Head rice yield was increased by $7.7{\sim}9.5%$ in silicate application. Protein content of milled rice was reduced by $0.2{\sim}0.3%$ and head rice rate was increased by $2.9{\sim}6.7%$ in silicate application due to decrease of chalky and damaged rice rate. In milling characteristics, color separation rate was improved by $4.2{\sim}7.2%$ and colored rice rate was decreased by $5.5{\sim}16.6%$ in silicate application. Acid value of stored brown rice were increased slowly in low temperature and silicate application, but that in room temperature and no silicate application was increased remarkably. The best degree rate of stored brown rice (over than 7.5 of pH) measured by the pH of grain was increased by the silicate application in both low and room temperature. Therefore, it was suggested that the storage characteristics of rice grain was improved by the silicate application.

Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques (주조, 3-D printing을 활용한 laser sintered 및 CAD/CAM milled 기법을 이용하여 제작된 코발트-크롬 합금의 물리적 성질 및 파절 단면 관찰 비교 연구)

  • Choi, Yun-Jung;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Ahn, Jin-Soo;Park, Dong-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Purpose: The purpose of present study is to compare mechanical properties and microstructural characteristics of fractured surface for cast, 3-D printing laser sintered and CAD/CAM milled cobalt-chromium (Co-Cr) alloy specimens and to investigate whether laser sintered technique is adequate for dental applications. Materials and methods: Thirty six flat disc shape Co-Cr alloy specimens were fabricated for surface hardness test and divided into three groups according to the manufacturing methods; 12 specimens for casting (n=12), 12 specimens for laser sintered technology (n=12) and 12 specimens for milled technology (n=12). Twelve dumbbell shape specimens for each group were also fabricated for a tensile test. Statistical comparisons of the mechanical properties for the alloys were performed by Kruskal-Wallis test followed by Mann-Whitney and Bonferroni test. The microstructural characteristics of fractured surfaces were examined using SEM. Results: There were significant differences in the mean Vickers hardness values between all groups and the cast specimen showed the highest (455.88 Hv) while the CAD/CAM milled specimen showed the lowest (243.40 Hv). Significant differences were found among the three groups for ultimate tensile strength, 0.2% yield stress, elongation, and elastic modulus. The highest ultimate tensile strength value (1442.94 MPa) was shown in the milled group and the highest 0.2% yield strength (1136.15 MPa) was shown in the laser sintered group. Conclusion: Different manufacturing methods influence the mechanical properties and microstructure of the fractured surfaces in Co-Cr alloys. The cast Co-Cr alloy specimens showed the highest Vickers hardness, and the CAD/CAM milled specimens revealed the highest tensile strength value. All alloys represent adequate mechanical properties satisfying the ISO standards of dental alloy.

Effect of Yield Strength and Morphology of Spray-dried $Al_2O_3/15v/o ZrO_2$ Granules on the Compaction Behaviour

  • Shin, Dong-Woo;Yoon, Dae-Hyun;Lim, Chang-Sung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.13-17
    • /
    • 1997
  • The densification of $Al_2$O$_3$/15v/o ZrO$_2$ (Zirconia Toughened Alumina: ZTA) to the 99% of theoretical density was attempted by controlling the processing parameters affecting the each processing step i.e., milling, spray-drying, forming and pressureless sintering. The ZTA processed under the identical conditions showed a large variation in the green and sintered densities, and the mechanical properties. The deviation of 4-point bending strength was more than 100MPa for the ZTA with ~99% of theoretical density. Moreover, the relative green and sintered densities were deviated greatly from the average value. This low reproducibility could be caused by the variation of spray-dried granule properties. Thus, the effect of yield strength and morphology of spray-dried ZTA granule on the green and sintered densities and the mechanical properties needs to be studied in detail. The objective of this work is to fine out the optimum condition of compaction pressure and compaction method depending on the properties of spray-dried granules.

  • PDF

Effect of Spray-drying Condition and Surfactant Addition on Morphological Characteristics of Spray-dried Nanocellulose

  • Park, Chan-Woo;Han, Song-Yi;Namgung, Hyun-Woo;Seo, Pureun-Narae;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this study, spray-drying yield and morphological characterization of spray-dried cellulose nanofibril (CNF) and TEMPO-oxidized nanocellulose (TONC) depending on spray-drying condition and surfactant addition was investigated. As spray-drying temperature increased, the yield of spray-dried CNF was increased. The highest spray-drying yields in both nanocelluloses were found at didecyl dimethyl ammonium chloride (DDAC) addition of 2.5 phr at all investigated temperatures. The spray-dried CNF was the sphere-like particle, but the spray-dried TONC showed both rod and sphere-like morphology. The average diameter of spray-dried CNF was decreased with increasing DDAC addition amount, resulting in the increase of specific surface area.

Influence of Yeast-treated Rice By-products on Growth, Yield and Grain Quality of Rice

  • Seo, Pil Dae;Nunez, John Paolo;Park, Jae Sang;Ultra, Venecio U. Jr.;Lee, Sang Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The use of agricultural by-products as alternative nutrient sources in crop production had gained popularity in order to reducing the rate of chemical fertilizer application in the field. This study was conducted to determine whether the application of rice milling by-products treated with yeast inoculants could substitute, or reduce the rate of chemical fertilizer application. The results of agronomic measurements showed that the effect of incorporated materials was not immediate, as compared to 100% chemical fertilizer application. However, grain yield and quality was either the same or greater than 100% chemical fertilizer application. It was found out that expanded rice hull (treated with yeast or not) could reduce the rate of applying chemical fertilizers by half. Also, yeast treatment was only favorable only to expanded rice hull and not with rice bran, and was already found to be a potential material in reducing chemical fertilizer application in rice production.

Structure of a Plasma Ion Source for a Cross-Section SEM Sample (SEM 단면 시료 제작을 위한 플라즈마 이온원의 구조)

  • Won, Jong-Han;Jang, Dong-Young;Park, Man-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.400-406
    • /
    • 2015
  • This study researched the structure of the source of an ion milling machine used to fabricate a scanning electron microscope (SEM) sample. An ion source is used to mill out samples of over 1 mm dimension using a broad ion beam to generate plasma between the anode and cathode using a permanent magnet. To mill the sample in the vacuum chamber, the ion source should be greater than 6 kV for a positive ion current over $200{\mu}A$. To discover the optimum operating conditions for the ion miller, the diameter of the extractor, anode shape, and strength of the permanent magnet were varied in the experiments. A silicon wafer was used as the sample. The sputter yield was measured on the milled surface, which was analyzed using the SEM. The wafer was milled by injecting 1 sccm of argon gas into the 0.5 mTorr vacuum chamber.