DOI QR코드

DOI QR Code

Comparison of the mechanical properties and microstructures of fractured surface for Co-Cr alloy fabricated by conventional cast, 3-D printing laser-sintered and CAD/CAM milled techniques

주조, 3-D printing을 활용한 laser sintered 및 CAD/CAM milled 기법을 이용하여 제작된 코발트-크롬 합금의 물리적 성질 및 파절 단면 관찰 비교 연구

  • Choi, Yun-Jung (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Koak, Jai-Young (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Seong-Kyun (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Ahn, Jin-Soo (Department of Dental Biomaterials Science, School of Dentistry, Seoul National University) ;
  • Park, Dong-Soo (US Army Carius Dental Clinic, Dentac-Korea, 618th Dental Command)
  • 최윤정 (서울대학교 치의학대학원 치과보철학교실) ;
  • 곽재영 (서울대학교 치의학대학원 치과보철학교실) ;
  • 허성주 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김성균 (서울대학교 치의학대학원 치과보철학교실) ;
  • 안진수 (서울대학교 치의학대학원 치과생체재료과학교실) ;
  • 박동수 (주한미8군 618치무사령부, 용산 케리어스 치과병원)
  • Received : 2014.02.05
  • Accepted : 2014.03.31
  • Published : 2014.04.30

Abstract

Purpose: The purpose of present study is to compare mechanical properties and microstructural characteristics of fractured surface for cast, 3-D printing laser sintered and CAD/CAM milled cobalt-chromium (Co-Cr) alloy specimens and to investigate whether laser sintered technique is adequate for dental applications. Materials and methods: Thirty six flat disc shape Co-Cr alloy specimens were fabricated for surface hardness test and divided into three groups according to the manufacturing methods; 12 specimens for casting (n=12), 12 specimens for laser sintered technology (n=12) and 12 specimens for milled technology (n=12). Twelve dumbbell shape specimens for each group were also fabricated for a tensile test. Statistical comparisons of the mechanical properties for the alloys were performed by Kruskal-Wallis test followed by Mann-Whitney and Bonferroni test. The microstructural characteristics of fractured surfaces were examined using SEM. Results: There were significant differences in the mean Vickers hardness values between all groups and the cast specimen showed the highest (455.88 Hv) while the CAD/CAM milled specimen showed the lowest (243.40 Hv). Significant differences were found among the three groups for ultimate tensile strength, 0.2% yield stress, elongation, and elastic modulus. The highest ultimate tensile strength value (1442.94 MPa) was shown in the milled group and the highest 0.2% yield strength (1136.15 MPa) was shown in the laser sintered group. Conclusion: Different manufacturing methods influence the mechanical properties and microstructure of the fractured surfaces in Co-Cr alloys. The cast Co-Cr alloy specimens showed the highest Vickers hardness, and the CAD/CAM milled specimens revealed the highest tensile strength value. All alloys represent adequate mechanical properties satisfying the ISO standards of dental alloy.

연구 목적: 본 연구의 목적은 주조, 3-D printing laser sintered 및CAD/CAM technology를 이용한 milling 방법으로 제작된 치과용 코발트-크롬 합금의 기계적 물성을 비교하고 파절 단면의 미세 구조를 살펴보는 데 있다. 이를 통해 새롭게 소개된 제작 기법 - 3D-printing laser sintered - 이 치과용 합금 제작으로 적합한 지 알아보고자 한다. 연구 재료 및 방법: 36개의 flat disc 모양의 시편을 제작하여 제작 방법에 따라 세 집단으로 나누었다; 주조 방식으로 제작한 12개, laser sintering 방법으로 12개, CAD/CAM milling 방법으로 12개의 시편을 제작하여 표면 경도 시험을 시행하였다. 또한 각 집단 별로 12개의 dumbbell 모양의 시편을 제작하여 인장 강도 시험을 시행하였다. 통계량이 비모 수적 통계 분포를 보였으므로 Kruskal-Wallis 검정을 이용하여 각 실험군의 인장 강도 시험 결과를 비교했으며, 통계적 유의 수준은P=.05로 설정하여 Mann-Whitney 및 Bonferroni 사후 검정을 시행하였다. 전자 주사 현미경을 사용하여 파절 단면의 미세 구조를 관찰하였다. 결과: Vickers hardness test에서 세 집단간에 모두 유의한 차이가 있었고, 주조 방식으로 제작된 실험군에서 가장 큰 표면 경도(455.88 Hv)가, CAD/CAM milling으로 제작된 실험군에서 가장 낮은 표면 경도(243.40 Hv)를 나타냈다. 최대 인장 강도, 0.2% 항복강도, elongation 및 elastic modulus에서 세 집단간에 모두 유의한 차이가 나타났으며, CAD/CAM milling으로 제작한 실험군에서 가장 높은 최대 인장 강도(1442.94 MPa)가, laser sintered 실험군에서 가장 큰 0.2% 항복 강도(1136.15 MPa)가 나타났다. 파절 단면의 전자 주사 현미경 관찰 결과, 주조 시편에서는 독특한 성긴 모양과 전형적인 주조 다공성 구조가 관찰되었고, laser sintered 시편에서는 편평한 면을 동반한 거친 결정 구조가, 그리고 milled 시편에서는 균일하고 규칙적인 치밀 미세 구조가 나타났다. 결론: 서로 다른 제작 방법은 코발트-크롬 합금의 물리적 성질과 파절 단면의 미세 구조에 영향을 미쳤다. 주조 방식으로 제작된 시편에서 가장 큰 표면 경도가, milling으로 제작된 시편에서 가장 큰 인장 강도를 나타냈으며, 본 연구의 모든 실험군에서 치과용 합금의 ISO 기준에 부합하는 물성을 보였다.

Keywords

References

  1. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63. https://doi.org/10.1067/mpr.2002.123817
  2. Akova T, Ucar Y, Tukay A, Balkaya MC, Brantley WA. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent Mater 2008;24:1400-4. https://doi.org/10.1016/j.dental.2008.03.001
  3. de Vasconcellos LG, Buso L, Lombardo GH, Souza RO, Nogueira L Jr, Bottino MA, Ozcan M. Opaque layer firing temperature and aging effect on the flexural strength of ceramic fused to cobalt-chromium alloy. J Prosthodont 2010;19:471-7. https://doi.org/10.1111/j.1532-849X.2010.00600.x
  4. Viennot S, Dalard F, Lissac M, Grosgogeat B. Corrosion resistance of cobalt-chromium and palladium-silver alloys used in fixed prosthetic restorations. Eur J Oral Sci 2005;113:90-5. https://doi.org/10.1111/j.1600-0722.2005.00190.x
  5. Wu Y, Moser JB, Jameson LM, Malone WF. The effect of oxidation heat treatment of porcelain bond strength in selected base metal alloys. J Prosthet Dent 1991;66:439-44. https://doi.org/10.1016/0022-3913(91)90502-N
  6. Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, Doi H, Kurosu S, Chiba A, Wakabayashi N, Igarashi Y, Hanawa T. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 2013;21:67-76. https://doi.org/10.1016/j.jmbbm.2013.01.021
  7. Fasbinder DJ. Clinical performance of chairside CAD/CAM restorations. J Am Dent Assoc 2006;137:22S-31S.
  8. Suleiman SH, Vult von Steyern P. Fracture strength of porcelain fused to metal crowns made of cast, milled or laser-sintered cobalt-chromium. Acta Odontol Scand 2013;71:1280-9. https://doi.org/10.3109/00016357.2012.757650
  9. Quante K, Ludwig K, Kern M. Marginal and internal fit of metal- ceramic crowns fabricated with a new laser melting technology. Dent Mater 2008;24:1311-5. https://doi.org/10.1016/j.dental.2008.02.011
  10. Xin XZ, Chen J, Xiang N, Wei B. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique. Cell Biochem Biophys 2013;67:983-90. https://doi.org/10.1007/s12013-013-9593-9
  11. ISO Standard 9693. Metal-ceramic dental restorative systems. International Organization for Standardization, Geneva, Switzerland 1999E.
  12. Qiu J, Yu WQ, Zhang FQ, Smales RJ, Zhang YL, Lu CH. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing. Eur J Oral Sci 2011;119:93-101. https://doi.org/10.1111/j.1600-0722.2011.00791.x
  13. Wu L, Zhu H, Gai X, Wang Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J Prosthet Dent 2014;111:51-5. https://doi.org/10.1016/j.prosdent.2013.09.011
  14. Ucar Y, Brantley WA, Johnston WM, Dasgupta T. Mechanical properties, fracture surface characterization, and microstructural analysis of six noble dental casting alloys. J Prosthet Dent 2011;105:394-402. https://doi.org/10.1016/S0022-3913(11)60081-4
  15. Kruth JP, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol 2004;149:616-22. https://doi.org/10.1016/j.jmatprotec.2003.11.051
  16. Shiomi M. Osakada K, Nakamura K, Yamashita T, Abe F. Residual stress within metallic model made by selective laser melting process. CIRP Annals - Manuf Technol 2004;53:195-8. https://doi.org/10.1016/S0007-8506(07)60677-5
  17. Kellerhoff RK, Fischer J. In vitro fracture strength and thermal shock resistance of metal-ceramic crowns with cast and machined AuTi frameworks. J Prosthet Dent 2007;97:209-15. https://doi.org/10.1016/j.prosdent.2007.02.007

Cited by

  1. Rehabilitación de rebordes severamente atróficos mediante prótesis híbridas confeccionadas con tecnología de sinterización láser cromo-cobalto; reporte de caso vol.9, pp.1, 2016, https://doi.org/10.1016/j.piro.2015.03.007
  2. Marginal Accuracy and Internal Fit of 3-D Printing Laser-Sintered Co-Cr Alloy Copings vol.10, pp.1, 2017, https://doi.org/10.3390/ma10010093
  3. Mechanical and Thermoelectric Properties of Bulk AlSb Synthesized by Controlled Melting, Pulverizing and Subsequent Vacuum Hot Pressing vol.9, pp.8, 2019, https://doi.org/10.3390/app9081609
  4. Comparison of Mechanical Properties of Milled and Casted Cobalt-Chromium Alloys Using Three-point Bending Test vol.23, pp.3, 2014, https://doi.org/10.32542/implantology.2019013
  5. Comparison of the Structure and Properties of the Solid Co-Cr-W-Mo-Si Alloys Used for Dental Restorations CNC Machined or Selective Laser-Sintered vol.9, pp.4, 2014, https://doi.org/10.1520/mpc20200023
  6. 망사 및 스틱 형태의 유리섬유 보강재를 삽입한 의치상용 레진의 굴곡강도 및 굴곡계수 비교 평가 vol.42, pp.2, 2014, https://doi.org/10.14347/kadt.2020.42.2.91
  7. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry vol.29, pp.7, 2014, https://doi.org/10.1111/jopr.13212
  8. Mechanical Properties of Laser-Sintered 3D-Printed Cobalt Chromium and Soft-Milled Cobalt Chromium vol.2, pp.4, 2014, https://doi.org/10.3390/prosthesis2040028
  9. Does Simulated Porcelain Firing Influence Corrosion Properties of Casted and Sintered CoCr Alloys? vol.14, pp.15, 2014, https://doi.org/10.3390/ma14154147