• Title/Summary/Keyword: milling rate

Search Result 348, Processing Time 0.029 seconds

Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions (50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석)

  • Kim, Jung-Hwan;Yoon, Sae-Jung;Hahn, Byung-Dong;Ahn, Cheol-Woo;Yoon, Woon-Ha;Choi, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

A Study on the Oxygen Behavior Characterization of V2O5/TiO2 Catalysts by Ball Milling (V2O5/TiO2 촉매의 Ball Milling에 따른 산소 거동 특성 연구)

  • Kwon, Dong Wook;Park, Kwang Hee;Lee, Sang Moon;Jang, Du Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • We study on the oxygen behavior of $V_2O_5/TiO_2$ catalysts in the $NH_3$-selective catalytic reduction (SCR) prepared by the ball milling processing. There are not any changes in crystal structure and surface area of the $TiO_2$ catalyst by ball milling, but the maximal reduction temperature decreased in $H_2$-temperature programmed reduction (TPR) analysis. Experimental observations with various concentrations of oxygen indicate that all catalysts showed a very low NOx conversion rate in the absence of oxygen and the reactivity of ball milled catalyst higher depending on the oxygen. It is occurred because the degree of participation of atmospheric oxygen and lattice oxygen is great than that of the not-milled catalyst.

Alined Technology of Rice Complex Center consisted of Bulk Drying, Storage and Processing (벼 수확후 산물건조, 저장 및 가공방법 일관화 연구)

  • 김기종;손영구;손종록;허한순;이춘기
    • Food Science and Preservation
    • /
    • v.8 no.2
    • /
    • pp.140-145
    • /
    • 2001
  • Although the drying times of paddies were significantly shortened by the application of higher drying temperatures, the 12, 10 and 8 hours were needed for the reduction of moisture contents from 23.55 to 15% at the temperatures of 45, 50 and 55$\^{C}$, respectively. Milling yields(MY) and rice rates(HRR) were decreased by increasing of the drying temperature. The MY ratios were 75.50, 75.42 and 75.31% and HRR were 93.28, 92.14 and 91.12% in drying temperature of 40, 50 and 55$\^{C}$, respectively. In the milling processes of tough rice with the used of a milling machine equipped with both of abrasive and friction types in a body, the reduction rates of bran and the occurrence of broken rice increased with the pressures at outlet or the recycled passing tines. In the process for humidified friction whitening of rice, it was found that the optimum addition rate of water for the best quality was the 11.2 liters per tone of white rice.

  • PDF

A Study on the Prediction of End Milling Cutting Force by Tensile Test (인장실험을 통한 엔드밀링 작업에서의 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.257-262
    • /
    • 1999
  • On End Milling Process predict the cutting force is important. Dynamics the shear stress is the main parameter influencing the energy requirement in machining. It is well known that a nonzero force is obtained when cutting forces measured at different feed rates but otherwise constant cutting conditions are extrapolated to zero feed rate. In this paper, the cutting force measured in end-milling is compared with the simulated force models. The result show that stress measured in cutting is consistent with that stresses predicted.

  • PDF

Determination of Tool Orientation in 5-axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • 조인행;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.199-204
    • /
    • 1994
  • A method for determining the collision-free tool orientation for 5-axis milling is presented. In 5-axis milling, the proper tool orientation as well as the optimal CC-data has to be selected to machine the workpiece efficiently and accurately and accurately. Essentially, the tool orientation should be determined to avoid collisions between the tool and workpiece and to enable efficient machining. In this work, the tool orientation is determined at every CC-point which is assumed to be given. The procedure uses the potential energy method that assumes the tool and the part surfaces are charged with static electricity. This approach can detect can deteat both global and local collisions (gouging) irrespective of the tool shape. Further, in order to increase the machining efficiency, the material removal rate is maximized simultaneously.

  • PDF

Synthesis of $(ZrSiO_4)$ Powders by the Sol-Gel Process -Effect of the Milling- (졸-겔법에 의한 지르콘$(ZrSiO_4)$ 분말 합성 -재분쇄(Milling)에 대한 효과-)

  • 신용철;신대용;한상목;남인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.853-857
    • /
    • 1995
  • ZrSiO4 powders were prepared from partially hydrolyzed solution of Si(OC2H5)4 and ZrOCl2.8H2O solution by the sol-gel method and formation rate of ZrSiO4 on the reaction parameter was investigated. In order to prepare homogeneous ZrSiO4 precursor gels, the H2O/Si(OC2H5)4 molar ratio of about 2, the pH of the ZrOCl2.8H2O solution fo about 4 and stirring time of the mixed solutions of about 2 hrs were appropriate. Formation of temperature of ZrSiO4 reduced about 15$0^{\circ}C$ by milling and formation of ZrSiO4 at 1300~135$0^{\circ}C$ showed an accelerative increase through the hedvall effect by silica.

  • PDF

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

Changes in Water Content Affect the Post-Milling Quality of Paddy Rice Stored at Low Temperature

  • Kim, Young-Keun;Hong, Seong-Gi;Lee, Sun-Ho;Park, Jong-Ryul;Choe, Jung-Seob
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.336-344
    • /
    • 2014
  • Purpose: In this study, the effect of milling on paddy rice stored at low temperature, the changes in grain temperature of bulk storage bags exposed at room temperature, the post-milling water content of paddy rice, the whiteness of rice, and the rate of pest incidence were investigated and data were analyzed. Methods: Changes in temperature inside the bulk storage bags kept at low temperature and grain temperature after exposure to room temperature were measured. Experiments were conducted for identifying the reasons of post-milling quality changes in paddy rice stored at low temperature. Results: It was determined that a short-term increase of water content in paddy rice was directly related to surface condensation, and that rice should be milled at least 72 h after removal from low-temperature storage, in order to completely eliminate surface condensation of paddy rice kept in bulk storage bags. It was observed that post-milling quality of rice changed, but water content was maintained at high levels for more than 18 d in rice that was milled when condensation occurred, regardless of paper or vinyl packaging. Rice whiteness rapidly decreased in rice that was milled when condensation occurred, regardless of packaging, while rice that was milled 72 h or more after removal from low temperature storage did not show any significant changes in whiteness. No pest incidence was observed up to 12 d after removal from low temperature storage, regardless of packaging. Starting at 18 d, after removal from low temperature storage, rice that was milled when condensation occurred, was affected by pests, while 24 d after removal from low temperature storage, all portions of rice were affected by pests. Conclusions: Our results suggest that changes in post-milling quality of rice could be significantly reduced by exposing paddy rice to room temperature for at least 72 h before milling, in order to allow the increase of grain temperature and prevent surface condensation.

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.