DOI QR코드

DOI QR Code

Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions

50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석

  • Kim, Jung-Hwan (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Yoon, Sae-Jung (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Hahn, Byung-Dong (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Ahn, Cheol-Woo (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Yoon, Woon-Ha (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Choi, Jong-Jin (Functional Ceramics Department, Korea Institute of Materials Science)
  • 김정환 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 윤세중 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 한병동 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 안철우 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 윤운하 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 최종진 (한국기계연구원 부설 재료연구소 기능세라믹연구실)
  • Received : 2019.03.07
  • Accepted : 2019.03.29
  • Published : 2019.04.27

Abstract

This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

Keywords

References

  1. M. S. Norhasri, M. S. Hammidah and A. M. Fadzil, Constr. Build. Mater., 133, 91 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.005
  2. L. Filipponi, D. Surherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities, European Commission, Luxembourg, EU (2013).
  3. H. Gleiter, Prog. Mater. Sci., 33, 4 (1990).
  4. R. S. Mishra, R. Z. Valiev and A. K. Mukherjee, Nanostruct. Mater., 9, 473 (1997). https://doi.org/10.1016/S0965-9773(97)00103-7
  5. A. Kwade, Powder Technol., 105, 14 (1999). https://doi.org/10.1016/S0032-5910(99)00113-8
  6. T. P. Yadav, R. M. Yadav, D. P. Singh, Nanosci. Nanotechnol., 2, 22 (2012).
  7. D. L. Zhang, Prog. Mater. Sci., 49, 537 (2004). https://doi.org/10.1016/S0079-6425(03)00034-3
  8. K. Shinohara, B. Golman, T. Uchiyama and M. Otani, Powder Technol., 103, 292 (1999). https://doi.org/10.1016/S0032-5910(99)00042-X
  9. M. Becker and J. Schwedes, Powder Technol., 105, 374 (1999). https://doi.org/10.1016/S0032-5910(99)00161-8
  10. N. Bamba, Y.-H. Choa, T. Sekino and K. Niihara, J. Eur. Ceram. Soc., 23, 773 (2003). https://doi.org/10.1016/S0955-2219(02)00168-1
  11. M. Trunec, Ceramics- Silikaty, 52, 165 (2008).
  12. R. H. J. Hannink, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
  13. F. F. Lange, J. Mater. Sci., 17, 225 (1982). https://doi.org/10.1007/BF00809057
  14. S. Stemmer, J. Vleugels, O. V. D. Biest, J. Eur. Ceram. Soc., 18, 1565 (1998). https://doi.org/10.1016/S0955-2219(98)00078-8
  15. K. Matsui, H. Yoshida and Y. Ikuhara, Acta Mater., 56, 1315 (2008). https://doi.org/10.1016/j.actamat.2007.11.026
  16. I. Nettleship and R. Stevens, Int. J. High Tech. Ceram., 3, 1 (1987). https://doi.org/10.1016/0267-3762(87)90060-9
  17. O. Vasylkiv, Y. Sakka and V. V. Skorokhod, Mater. Trans., 44, 2235 (2003). https://doi.org/10.2320/matertrans.44.2235
  18. T. P. Hoepfner and E. D. Case, Ceram. Int., 29, 699 (2003) https://doi.org/10.1016/S0272-8842(02)00220-1
  19. ASM Handbook, "Volume 15 Casting." Materials Park: ASM International (2008)
  20. Totten, George E. "ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology." (2017).
  21. Shackelford, J. F., Han, Y. H., Kim, S., & Kwon, S. H.CRC materials science and engineering handbook. CRC press, (2016).