Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.878

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling  

Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Kwak, Young Jun (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 878-884 More about this Journal
Abstract
In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.
Keywords
hydrogen absorbing materials; mechanical milling; scanning electron microscopy (SEM); X-ray diffraction; a polymer PVDF (polyvinylidene fluoride) addition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 52, 957 (2014).   DOI
2 S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 53, 187 (2015).   DOI
3 H. R. Park, S. H. Lee, and M. Y. Song, J. Ceram. Process. Res. 17, 1292 (2016).
4 https://en.wikipedia.org/wiki/Polyvinylidene_fluoride
5 M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 54, 210 (2016).   DOI
6 P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014).   DOI
7 M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Bull. Mater. Sci. 37, 831 (2014).   DOI
8 H. R. Park, Y. J. Kwak, S. H. Lee, and M. Y. Song, Korean J. Met. Mater. 54, 916 (2016).   DOI
9 M. Y. Song and Y. J. Kwak, Korean J. Met. Mater. 56, 611 (2018).   DOI
10 H. R. Park, Y. J. Kwak, and M. Y. Song, Korean J. Met. Mater. 55, 656 (2017).
11 R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage, p. 38, Springer, New York (2009).
12 Z. Zhao, M. Qin, Y. Jia, Y. Chai, D. Hou, and N. Wang, Int. J. Hydrogen Energy 38, 10939 (2013).   DOI
13 Y.-J. Han, S.-J. Park, J. Nanosci. Nanotech. 17, 8075 (2017).   DOI
14 J. G. Yuan, Y. F. Zhu, L. Q. Li, Y. Wu, and S. X. Zhou, Int. J. Hydrogen Energy 42, 22366 (2017).   DOI
15 S. H. Hong, Y. J. Kwak, and M. Y. Song, Korean J. Met. Mater. 56, 59 (2018).   DOI
16 S. H. Hong and M. Y. Song, Korean J. Met. Mater. 56, 155 (2018).
17 S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 15, 8777 (2015).   DOI
18 Y. J. Kwak, S. H. Lee, B. S. Lee, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 15, 8763 (2015).   DOI
19 S. H. Hong and M. Y. Song, Met. Mater. Int. 22, 544 (2016).   DOI
20 M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, J. Nanosci. Nanotech. 16, 10499 (2016).   DOI
21 S. H. Hong and M. Y. Song, Met. Mater. Int. 22, 1121 (2016).   DOI
22 H. R. Park, Y. J. Kwak, S. H. Lee, and M. Y. Song, Korean J. Met. Mater. 54, 916 (2016).   DOI
23 Y. J. Kwak, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 42, 1018 (2017).   DOI
24 M. Y. Song and Y. J. Kwak, Korean J. Met. Mater. 56, 244 (2018).
25 Y. J. Kwak, H. R. Park, and M. Y. Song, Met. Mater. Int. 22, 423 (2018).
26 M. Y. Song, Y. J. Kwak, and E. Choi, Korean J. Met. Mater. 56, 524 (2018).   DOI
27 M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).   DOI
28 M. Y. Song, J. Mater. Sci. 30, 1343 (1995).   DOI
29 M .Y. Song, M. Pezat, B. Darriet, J. Y. Lee, and P. Hagenmuller, J. Mater. Sci. 21, 346 (1986).   DOI
30 S. N. Kwon, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 54, 510 (2016).   DOI
31 M. Y. Song, B. Darriet, M. Pezat, J. Y. Lee, and P. Hagenmuller, J. Less-Common Met. 118, 235 (1986).   DOI
32 M. Y. Song, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 12, 27 (1987).   DOI
33 H. R. Park, Y. J. Kwak, and M. Y. Song, Mater. Res. Bull. 99, 23 (2018).   DOI
34 M. Y. Song, H. R. Park, Int. J. Hydrogen Energy 18, 653 (1993).   DOI
35 M. Y. Song, E. Choi, and Y. J. Kwak, Korean J. Met. Mater. 56, 392 (2018).   DOI
36 J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).   DOI
37 M. Khrussanova, M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 86, 153 (1982).   DOI
38 S. Bouaricha, J. P. Dodelet, D. Guay, J. Hout, S. Boily, and R. Schulz, J. Alloy. Compd. 297, 282 (2000).   DOI
39 H. Imamura, Y. Takesue, T. Akimoto, and S. Tabata, J. Alloy. Compd. 293-295, 564 (1999).   DOI
40 S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011).   DOI
41 Y. J. Kwak, S. H. Lee, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 16, 10508 (2016).   DOI
42 S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 39, 16486 (2014).   DOI