DOI QR코드

DOI QR Code

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University) ;
  • Kwak, Young Jun (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • Received : 2018.08.08
  • Accepted : 2018.10.11
  • Published : 2018.12.05

Abstract

In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

Keywords

References

  1. S. H. Hong, Y. J. Kwak, and M. Y. Song, Korean J. Met. Mater. 56, 59 (2018). https://doi.org/10.3365/KJMM.2018.56.1.59
  2. S. H. Hong and M. Y. Song, Korean J. Met. Mater. 56, 155 (2018).
  3. S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 15, 8777 (2015). https://doi.org/10.1166/jnn.2015.11531
  4. Y. J. Kwak, S. H. Lee, B. S. Lee, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 15, 8763 (2015). https://doi.org/10.1166/jnn.2015.11533
  5. S. H. Hong and M. Y. Song, Met. Mater. Int. 22, 544 (2016). https://doi.org/10.1007/s12540-016-5557-0
  6. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, J. Nanosci. Nanotech. 16, 10499 (2016). https://doi.org/10.1166/jnn.2016.13184
  7. S. H. Hong and M. Y. Song, Met. Mater. Int. 22, 1121 (2016). https://doi.org/10.1007/s12540-016-6329-6
  8. H. R. Park, Y. J. Kwak, S. H. Lee, and M. Y. Song, Korean J. Met. Mater. 54, 916 (2016). https://doi.org/10.3365/KJMM.2016.54.12.916
  9. Y. J. Kwak, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 42, 1018 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.097
  10. M. Y. Song and Y. J. Kwak, Korean J. Met. Mater. 56, 244 (2018).
  11. Y. J. Kwak, H. R. Park, and M. Y. Song, Met. Mater. Int. 22, 423 (2018).
  12. M. Y. Song, E. Choi, and Y. J. Kwak, Korean J. Met. Mater. 56, 392 (2018). https://doi.org/10.3365/KJMM.2018.56.5.392
  13. M. Y. Song, Y. J. Kwak, and E. Choi, Korean J. Met. Mater. 56, 524 (2018). https://doi.org/10.3365/KJMM.2018.56.7.524
  14. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995). https://doi.org/10.1016/0360-3199(94)E0024-S
  15. M. Y. Song, J. Mater. Sci. 30, 1343 (1995). https://doi.org/10.1007/BF00356142
  16. S. N. Kwon, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 54, 510 (2016). https://doi.org/10.3365/KJMM.2016.54.7.510
  17. M .Y. Song, M. Pezat, B. Darriet, J. Y. Lee, and P. Hagenmuller, J. Mater. Sci. 21, 346 (1986). https://doi.org/10.1007/BF01144743
  18. M. Y. Song, B. Darriet, M. Pezat, J. Y. Lee, and P. Hagenmuller, J. Less-Common Met. 118, 235 (1986). https://doi.org/10.1016/0022-5088(86)90173-6
  19. M. Y. Song, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 12, 27 (1987). https://doi.org/10.1016/0360-3199(87)90123-6
  20. H. R. Park, Y. J. Kwak, and M. Y. Song, Mater. Res. Bull. 99, 23 (2018). https://doi.org/10.1016/j.materresbull.2017.10.041
  21. M. Y. Song, H. R. Park, Int. J. Hydrogen Energy 18, 653 (1993). https://doi.org/10.1016/0360-3199(93)90118-T
  22. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  23. M. Khrussanova, M. Pezat, B. Darriet, and P. Hagenmuller, J. Less-Common Met. 86, 153 (1982). https://doi.org/10.1016/0022-5088(82)90200-4
  24. S. Bouaricha, J. P. Dodelet, D. Guay, J. Hout, S. Boily, and R. Schulz, J. Alloy. Compd. 297, 282 (2000). https://doi.org/10.1016/S0925-8388(99)00612-X
  25. H. Imamura, Y. Takesue, T. Akimoto, and S. Tabata, J. Alloy. Compd. 293-295, 564 (1999). https://doi.org/10.1016/S0925-8388(99)00412-0
  26. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011). https://doi.org/10.1016/j.ijhydene.2010.08.103
  27. Y. J. Kwak, S. H. Lee, H. R. Park, and M. Y. Song, J. Nanosci. Nanotech. 16, 10508 (2016). https://doi.org/10.1166/jnn.2016.13185
  28. M. Y. Song and Y. J. Kwak, Korean J. Met. Mater. 56, 611 (2018). https://doi.org/10.3365/KJMM.2018.56.8.611
  29. S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Int. J. Hydrogen Energy 39, 16486 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.217
  30. S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 52, 957 (2014). https://doi.org/10.3365/KJMM.2014.52.11.957
  31. S. H. Lee, Y. J. Kwak, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 53, 187 (2015). https://doi.org/10.3365/KJMM.2015.53.3.187
  32. H. R. Park, S. H. Lee, and M. Y. Song, J. Ceram. Process. Res. 17, 1292 (2016).
  33. https://en.wikipedia.org/wiki/Polyvinylidene_fluoride
  34. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Korean J. Met. Mater. 54, 210 (2016). https://doi.org/10.3365/KJMM.2016.54.3.210
  35. P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006
  36. M. Y. Song, Y. J. Kwak, S. H. Lee, and H. R. Park, Bull. Mater. Sci. 37, 831 (2014). https://doi.org/10.1007/s12034-014-0013-6
  37. H. R. Park, Y. J. Kwak, S. H. Lee, and M. Y. Song, Korean J. Met. Mater. 54, 916 (2016). https://doi.org/10.3365/KJMM.2016.54.12.916
  38. H. R. Park, Y. J. Kwak, and M. Y. Song, Korean J. Met. Mater. 55, 656 (2017).
  39. R. A. Varin, T. Czujko, and Z. S. Wronski, Nanomaterials for Solid State Hydrogen Storage, p. 38, Springer, New York (2009).
  40. Z. Zhao, M. Qin, Y. Jia, Y. Chai, D. Hou, and N. Wang, Int. J. Hydrogen Energy 38, 10939 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.062
  41. Y.-J. Han, S.-J. Park, J. Nanosci. Nanotech. 17, 8075 (2017). https://doi.org/10.1166/jnn.2017.15091
  42. J. G. Yuan, Y. F. Zhu, L. Q. Li, Y. Wu, and S. X. Zhou, Int. J. Hydrogen Energy 42, 22366 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.122