Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.4.233

Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions  

Kim, Jung-Hwan (Functional Ceramics Department, Korea Institute of Materials Science)
Yoon, Sae-Jung (Functional Ceramics Department, Korea Institute of Materials Science)
Hahn, Byung-Dong (Functional Ceramics Department, Korea Institute of Materials Science)
Ahn, Cheol-Woo (Functional Ceramics Department, Korea Institute of Materials Science)
Yoon, Woon-Ha (Functional Ceramics Department, Korea Institute of Materials Science)
Choi, Jong-Jin (Functional Ceramics Department, Korea Institute of Materials Science)
Publication Information
Korean Journal of Materials Research / v.29, no.4, 2019 , pp. 233-240 More about this Journal
Abstract
This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).
Keywords
ceramic beads; attrition rate; YSZ; zirconia; TZP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. S. Norhasri, M. S. Hammidah and A. M. Fadzil, Constr. Build. Mater., 133, 91 (2017).   DOI
2 L. Filipponi, D. Surherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities, European Commission, Luxembourg, EU (2013).
3 H. Gleiter, Prog. Mater. Sci., 33, 4 (1990).
4 R. S. Mishra, R. Z. Valiev and A. K. Mukherjee, Nanostruct. Mater., 9, 473 (1997).   DOI
5 A. Kwade, Powder Technol., 105, 14 (1999).   DOI
6 T. P. Yadav, R. M. Yadav, D. P. Singh, Nanosci. Nanotechnol., 2, 22 (2012).
7 D. L. Zhang, Prog. Mater. Sci., 49, 537 (2004).   DOI
8 K. Shinohara, B. Golman, T. Uchiyama and M. Otani, Powder Technol., 103, 292 (1999).   DOI
9 M. Becker and J. Schwedes, Powder Technol., 105, 374 (1999).   DOI
10 N. Bamba, Y.-H. Choa, T. Sekino and K. Niihara, J. Eur. Ceram. Soc., 23, 773 (2003).   DOI
11 M. Trunec, Ceramics- Silikaty, 52, 165 (2008).
12 R. H. J. Hannink, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000).   DOI
13 F. F. Lange, J. Mater. Sci., 17, 225 (1982).   DOI
14 S. Stemmer, J. Vleugels, O. V. D. Biest, J. Eur. Ceram. Soc., 18, 1565 (1998).   DOI
15 K. Matsui, H. Yoshida and Y. Ikuhara, Acta Mater., 56, 1315 (2008).   DOI
16 I. Nettleship and R. Stevens, Int. J. High Tech. Ceram., 3, 1 (1987).   DOI
17 O. Vasylkiv, Y. Sakka and V. V. Skorokhod, Mater. Trans., 44, 2235 (2003).   DOI
18 T. P. Hoepfner and E. D. Case, Ceram. Int., 29, 699 (2003)   DOI
19 ASM Handbook, "Volume 15 Casting." Materials Park: ASM International (2008)
20 Totten, George E. "ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology." (2017).
21 Shackelford, J. F., Han, Y. H., Kim, S., & Kwon, S. H.CRC materials science and engineering handbook. CRC press, (2016).