• Title/Summary/Keyword: microwave heating

Search Result 396, Processing Time 0.025 seconds

Comparison of temperature measurements methods to investigate the causes of deformation of packaging materials during microwave heating (전자레인지의 가열조리 시 포장재의 열변형 원인 규명을 위한 온도 측정 방법 비교)

  • Yoon, Chan Suk;Lee, Hwa Shin;Pfeiffer, Thomas;Cho, Ah Reum;Moon, Sang Kwon;Lee, Keun Taik
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.422-431
    • /
    • 2016
  • To investigate the causes of the thermal deformations of packaging materials when microwave-heating ready-to-eat sauce products packaged in stand-up pouches, patterns of temperature changes were determined using an infra-red thermal imaging camera, a thermo-sensitive tape, and a fiver-optic thermometer. The temperature distributions of spicy chicken sauce and Indian curry samples in a stand-up pouch were found to be uneven during micrewave heating. A sharp increase in the temperature was detected, especially above the filling layers and in the corners of sealing layers of the package. The temperature measurements using an infra-red thermal imaging camera are restricted to the surface, and therefore might underestimate the actual temperature. Using a thermo-sensitive tape, temperature up to $200^{\circ}C$ were measured in the spicy chicken sauce sample showing package deformation. When the temperature is measured using a fiber-optic thermometer, it is crucial to have precise sensor performance to accurately measure the temperature in a narrow hot-spot area of the package. In this experiment, the fiber-optic thermometer was attached to a GaAs crystal sensor, which obtained more sensitive and accurate temperature measurements than those by a convectional sensor.

직류 전류 이용 종양세포의 효율적 치료에 관한 시뮬레이션 연구

  • Kim, Jae-Hong;Yang, Tae-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.289-289
    • /
    • 2010
  • 정상 세포로부터 암과 같은 종양세포를 제거하는 방법으로 암세포가 사멸되는 임계온도 보다 높게 악성조직에 열을 가하는 방법이 연구되어지고 있다 [1]. 전류가 흐를 수 있는 4개의 전기탐침을 종양조직에 삽입하여 국부적으로 열을 발생시키는 발열요법으로 암을 치료하는 연구가 고려되고 있다. 발열요법은 1960년대에 시작하여 우리나라에서는 1985년 연세 암센터에서 capacitive type의 RF heating 또는 전자파에 의한 국소가온법과 방사선치료와 병용으로 이용되고 있다. 주로 이용되는 방법은 Radio frequency heating, Microwave heating, ultrasound heating을 들수 있다. 라디오주파수는 보통 300 MHz 이하의 주파수를 가리킨다. 본 연구에서는 교류파 대신에 직류전원에 의해 열을 발생하는 경우에 관한 연구이다. 전극에 의해 형성되는 전기장에 대한 방정식은 전도매질에서의 DC 응용모드이고, 조직 내에서의 직류 전류에 의해 발생되는 온도 분포를 모델링하는 bioheat 방정식과 연계된 문제이다. 전기장에 의해 발생되는 열의 근원은 resistive heat 또는 Joule 열이다. 본 연구에서는 교류 전류에 의한 RF heating 대신 단순한 모델의 경우로 직류 전류에 의한 열 발생에 관한 이론적 연구를 수행하였다. 종양 조직 내에 삽입된 전극에 22V를 인가하면 60초 이내에 $80^{\circ}C$까지 급속히 증가 된 후, 서서히 $90^{\circ}C$에 까지 도달한다. 4 개의 전극에 대칭적인 전위가 인가 된 경우 $50^{\circ}C$ 이상의 온도 분포를 암 조직의 모양과 유사하게 분포하게 하여 효과적인 치료를 수행 할 수 있는 조건을 제시한다.

  • PDF

Characteristics of Lipoxygenase in Black Rice (진도산 흑미의 lipoxygenase의 특성)

  • 이유석;송선주;이종욱
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.216-220
    • /
    • 1999
  • Lipoxygenase(LOX) activity of black rice(Chindo) was measured by spectrophotometric method at In m. Studies at different pH levels revealed that the optimal activity was exhibited at pH 7.0 with 24.97 unit/mg. Enzyme activity was tested at different concentration of the substrate. The apparent Vmax and Km values were determined from the Lineweaver-Burk plot to be 53.85 unit/mg and 0.21 mM. Enzyme activity due to storage temperature (-40, 4 and 25$^{\circ}C$) and period were decreased at all storage temperature. LOX activity of black rice was significantly decreased during the microwave heating.

  • PDF

Preparation of Silver/Polystyrene Nanocomposites by Radical Polymerization Using Silver Carbamate Complex (은 카바메이트 복합체를 이용한 라디칼 중합에 의한 은/폴리스티렌 나노복합체의 제조)

  • Park, Heon-Su;Park, Hyung-Seok;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.144-149
    • /
    • 2010
  • Ag/polystyrene(PS) nanocomposites were prepared by in situ reduction of silver 2-ethylhexylcarbamate (Ag-CB) complex and follwing radical polymerization only by heating at 110 $^{\circ}C$. In contrast to this conventional heating method, the microwave irradiation afforded well-dispersed silver nanoparticles(NPs) in styrene monomer without polymerization. The synthesis of Ag NPs proceeded uniformly throughout the reaction vessel only under microwave irradiation, completing the reaction simultaneously in the whole reaction solution. Successive polymerization of the monomer containing the resultant NPs has successfully produced a hybrid of the silver NPs dispersed in PS matrix. Ag/PS (0.1/100) nanocomposites were prepared successfully by melt-mixing process using Ag/PS(4.0/100) as a master-batch. UV-VIS spectroscopy, TEM, and X-ray diffraction techniques were used to investigate the process of formation of Ag/PS nanocomposites.

Disign and Thermal Distribution of Intra-hyperthermia Microwave Antennas for Utero-cervical Applicators (자궁강내 온열치료를 위한 마이크로파 안테나의 제작과 온열 분포)

  • Chu, Sung-Sil;Moon, Sun-Rock
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.133-136
    • /
    • 1990
  • Intracavitary brachytherapy combined hypertermin for utero-conical cancer seems to be a promising method for salvage treatments in persistent tumors and inoperable or previously irradiated cervical recurrences. In order to heat the vaginal apex and uterus, powerfull conical antennas which are suitable for afterloading cervical applicator have been designed for use in conjuction with intracavitary radiation therapy. The antennas were constructed with conical conductive material to feed line and the effective lenght were designed proportional to microwave length, Power deposition profiles of 2450 MHz of conical antennas were studied in both phantom models and muscle tissue and compared to those of commonly used dipole antenna. Improvement of the heating pattern was found in both phantom and muscle tissue. The heating pattern produced by the conical antenna resembles an ellipsoid and then the temperature distribution in depth was extended to $2\~3\;cm$ from the effective antenna axis.

  • PDF

Comparative Study of Properties of Dental Zirconia According to Microwave Sintering Method (마이크로웨이브 소결방법에 따른 치과용 지르코니아의 물리적 특성)

  • Kim, Tae-Suk;Yu, Chin-Ho;Kim, Gi-Chul;Park, Won-Uk;Seo, Jung-Il;Hwang, Kyu-Hong
    • Journal of Technologic Dentistry
    • /
    • v.34 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • Purpose: Densification and mechanical properties of dental zirconia ceramics were evaluated by different sintering methods. Materials and Methods: Y-TZP zirconia block(Kavo $Everest^{(R)}$ ZS blank, Kavo dental GmbH, Bismarckring, Germany) was used in this study. Sintering were performed in heat sintering furnace and microwave sintering furnace, and then experimented and analyzed on a change in densification according to the sintering time, a change in densification according to thickness, flexural strength and micro-structure in zirconia specimens. Results: Microwave sintering was very effective in considerable mechanical properties such as flexural strength and bulk density was drastically increased than conventional electric heating method. It is also shown that microwave sintering time was faster and more economical than common method to be present in qualities which equal or exceed. Conclusion: It will be important to seek the accurate sintering condition of dental zirconia by microwave sintering method and the continuous research is necessary for the study of relationship between sintering methods and mechanical properties.

Effect of Hot Water and Microwave Heating on the Inactivation of Enterobacter sakazakii in Reconstituted Powdered Infant formula and Sunsik (열수(熱水)와 마이크로웨이브 가열이 조제분유 및 선식 용해 중 Enterobacter sakazakii 사멸에 미치는 영향)

  • Kim, Jung-Beom;Park, Yong-Bae;Lee, Myung-Jin;Kim, Ki-Cheol;Huh, Jeong-Weon;Kim, Dae-Hwan;Lee, Jong-Bok;Kim, Jong-Chan;Choi, Jae-Ho;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • Enterobacter sakazakii was initially referred to as yellow-pigmented Enterobacter cloacae and reclassified in 1980. E. sakazakii infection cause life-threatening meningitis, septicemia, and necrotizing enterocolitis in infants. Powdered infant formula (PIF) and baby foods may be the important vehicle of E. sakazakii infection. It has been reported that E. sakazakii was isolated from PIF and sunsik ingredients produced in Korea. Some infants have been fed sunsik as a weaning diet. Therefore, it is necessary that this organism should be inactivated on preparing PIF and sunsik at homes and in hospitals. The cocktail of three Korean E. sakazakii strains (human, sunsik and soil isolates) were used to investigate the inactivation of this organism with hot water at 50, 60, 65, 70 and $80^{\circ}C$ and microwave heating for 60, 75, 90, 105 and 120 sec. Reconstituted PIF and sunsikwere inoculated with cocktailed vegetative cells of E. sakazakii at 6 log CFU/mL. Thermal inactivation of vegetative cells of E. sakazakii were achieved by reconstituted PIF and sunsik with hot water at $60^{\circ}C$ or greater and with microwave heating at 2,450 MHz for 75 sec or longer. Considering that biofilm formation of E. sakazakii was adapted to survive the dry environment that is PIF and sunsik and thermal resistance increased, it is suggested that inactivation of E. sakazakii was used by hot water at $70^{\circ}C$ or greater and microwave heating for 90 sec or longer. Reconstituted PIF and sunsik were inoculated with cocktailed vegetative cells of E. sakazakii at 2 to 3 log CFU/mL to investigate the growth curve of this organism and stored at 5, 10, 15, 20, 25, 30 and $35^{\circ}C$. Viable counts slightly changed at 5, $10^{\circ}C$ during 48 h but grew at $15^{\circ}C$ or greater. Considering that E. sakazakii is able to grow in infant formula milk at refrigerator temperature, reconstituted PIF and sunsik that are not immediately consumed should be discarded or stored at refrigeration temperatures within 24 h.

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

One-step microwave synthesis of magnetic biochars with sorption properties

  • Zubrik, Anton;Matik, Marek;Lovas, Michal;Stefusova, Katarina;Dankova, Zuzana;Hredzak, Slavomir;Vaclavikova, Miroslava;Bendek, Frantisek;Briancin, Jaroslav;Machala, Libor;Pechousek, Jiri
    • Carbon letters
    • /
    • v.26
    • /
    • pp.31-42
    • /
    • 2018
  • Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide (마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과)

  • Lee, Jae-Hee;Hwang, Ki-Wan;Jeong, Young-Hoon;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.708-713
    • /
    • 2013
  • Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.