Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.12.708

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide  

Lee, Jae-Hee (Department of Materials Science & Engineering, Chungnam National University)
Hwang, Ki-Wan (Department of Materials Science & Engineering, Chungnam National University)
Jeong, Young-Hoon (Department of Materials Science & Engineering, Chungnam National University)
Kim, Eui-Tae (Department of Materials Science & Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.23, no.12, 2013 , pp. 708-713 More about this Journal
Abstract
Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.
Keywords
graphene; graphene oxide; graphite; microwave; exfoliation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).   DOI   ScienceOn
2 Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, R. S. Ruoff, Carbon, 48, 2118 (2010).   DOI   ScienceOn
3 B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Caoa, and Y. Yang, Energy Environ. Sci., 4, 2826 (2011).   DOI   ScienceOn
4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI   ScienceOn
5 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U.S.A., 102, 10451 (2005).   DOI   ScienceOn
6 S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, J. Am. Chem. Soc., 128, 7720 (2006).   DOI   ScienceOn
7 C. G. Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghrd, and K. Kern, Nano Lett., 7, 3499 (2007).   DOI   ScienceOn
8 G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science, 317, 219 (2007).   DOI   ScienceOn
9 C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. D. Heer, Appl. Phys. Lett., 92, 011914 (2008).   DOI   ScienceOn
10 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2009).   DOI   ScienceOn
11 X. S. Li, W. W. Cai, L. Colombo, and S. Ruoff, Nano Lett., 9, 4268 (2009).   DOI   ScienceOn
12 W. S. Hummers and R. E. Offeman, J. Amer. Chem. Soc., 80, 1339 (1958).   DOI
13 A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, Nano Lett., 8, 2012 (2008).   DOI   ScienceOn
14 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).   DOI   ScienceOn
15 X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009).   DOI   ScienceOn
16 G. Xin, W. Hwang, N. Kim, S. M. Cho, and H. Chae, Nanotechnology, 21, 405201 (2010).   DOI   ScienceOn