Browse > Article
http://dx.doi.org/10.5714/CL.2018.26.031

One-step microwave synthesis of magnetic biochars with sorption properties  

Zubrik, Anton (Institute of Geotechnics, Slovak Academy of Sciences)
Matik, Marek (Institute of Geotechnics, Slovak Academy of Sciences)
Lovas, Michal (Institute of Geotechnics, Slovak Academy of Sciences)
Stefusova, Katarina (Institute of Geotechnics, Slovak Academy of Sciences)
Dankova, Zuzana (Institute of Geotechnics, Slovak Academy of Sciences)
Hredzak, Slavomir (Institute of Geotechnics, Slovak Academy of Sciences)
Vaclavikova, Miroslava (Institute of Geotechnics, Slovak Academy of Sciences)
Bendek, Frantisek (Institute of Geotechnics, Slovak Academy of Sciences)
Briancin, Jaroslav (Institute of Geotechnics, Slovak Academy of Sciences)
Machala, Libor (Department of Experimental Physics, Faculty of Science, Palacky University)
Pechousek, Jiri (Department of Experimental Physics, Faculty of Science, Palacky University)
Publication Information
Carbon letters / v.26, no., 2018 , pp. 31-42 More about this Journal
Abstract
Adsorption is one of the best methods for wastewater purification. The fact that water quality is continuously decreasing requires the development of novel, effective and cost available adsorbents. Herein, a simple procedure for the preparation of a magnetic adsorbent from agricultural waste biomass and ferrofluid has been introduced. Specifically, ferrofluid mixed with wheat straw was directly pyrolyzed either by microwave irradiation (900 W, 30 min) or by conventional heating ($550^{\circ}C$, 90 min). Magnetic biochars were characterized by X-ray powder diffraction, $M{\ddot{o}}ssbauer$ spectroscopy, textural analysis and tested as adsorbents of As(V) oxyanion and cationic methylene blue, respectively. Results showed that microwave pyrolysis produced char with high adsorption capacity of As(V) ($Q_m=25.6mg\;g^{-1}$ at pH 4), whereas conventional pyrolysis was not so effective. In comparison to conventional pyrolysis, one-step microwave pyrolysis produced a material with expressive microporosity, having a nine times higher value of specific surface area as well as total pore volume. We assumed that sorption properties are also caused by several iron-bearing composites identified by $M{\ddot{o}}ssbauer$ spectroscopy ([super] paramagnetic $Fe_2O_3$, ${\alpha}-Fe$, non-stoichiometric $Fe_3C$, ${\gamma}-Fe_2O_3$, ${\gamma}-Fe$) transformed from nano-maghemite presented in the ferrofluid. Methylene blue was also more easily removed by magnetic biochar prepared by microwaves ($Q_m=144.9mg\;g^{-1}$ at pH 10.9) compared to using conventional techniques.
Keywords
magnetic biochar; microwave pyrolysis; ferrofluid; adsorption; arsenic;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Zhang YR, Wang SQ, Shen SL, Zhao BX. A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem Eng J, 233, 258 (2013). https://doi.org/10.1016/j.cej.2013.07.009.   DOI
2 Madrakian T, Afkhami A, Ahmadi M, Bagheri H. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater, 196, 109 (2011). https://doi.org/10.1016/j.jhazmat.2011.08.078.   DOI
3 Rocher V, Bee A, Siaugue JM, Cabuil V. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin. J Hazard Mater, 178, 434 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.100.   DOI
4 Lovas M, Znamenackova I, Zubrik A, Kovacova M, Dolinska S. The application of microwave energy in mineral processing: a review. Acta Montan Slovaca, 16, 137 (2011).
5 Salema AA, Ani FN. Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J Anal Appl Pyrolysis, 96, 162 (2012). https://doi.org/10.1016/j.jaap.2012.03.018.   DOI
6 Zuo W, Tian Y, Ren N. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Manage, 31, 1321 (2011). https://doi.org/10.1016/j.wasman.2011.02.001.   DOI
7 Jakabsky S, Zatko S, Bakos J, Zalesakova E. Preparation of ferrofluid. Czechoslovak Patent No. 223,697 (1982).
8 Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60, 309 (1938). https://doi.org/10.1021/ja01269a023.   DOI
9 Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK. Recommendations for the characterization of porous solids (technical report). Pure Appl Chem, 66, 1739 (1994). https://doi.org/10.1351/pac199466081739.   DOI
10 Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. solids. J Am Chem Soc, 38, 2221 (1916). https://doi.org/10.1021/ja02268a002.   DOI
11 Freundlich H. Uber die Adsorption in Losungen. Zeitschrift fur Physikalische Chemie, 57, 385 (1906). https://doi.org/10.1515/zpch-1907-5723.
12 Hudec P. Texture of Solids-Determination of Surface Properties of Adsorbents and Catalysts by Physical Adsorption of Nitrogen (In Slovak), Slovak Technical University Publisher, Bratislava (2012).
13 Hofer LJE, Cohn EM. Saturation magnetizations of iron carbides. J Am Chem Soc, 81, 1576 (1959). https://doi.org/10.1021/ja01516a016.   DOI
14 Kumar A, Jena HM. Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J Cleaner Prod, 137, 1246 (2016). https://doi.org/10.1016/j.jclepro.2016.07.177.   DOI
15 Bulut Y, Aydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259 (2006). https://doi.org/10.1016/j.desal.2005.10.032.   DOI
16 Zhao X, Wang W, Liu H, Ma C, Song Z. Microwave pyrolysis of wheat straw: product distribution and generation mechanism. Bioresour Technol, 158, 278 (2014). https://doi.org/10.1016/j.biortech.2014.01.094.   DOI
17 Ishizaki K, Nagata K, Hayashi T. Localized heating and reduction of magnetite ore with coal in composite pellets using microwave irradiation. ISIJ Int, 47, 817 (2007). https://doi.org/10.2355/isijinternational.47.817.   DOI
18 David B, Zboril R, Mashlan M, Grygar T, Dumitrache F, Schneeweiss O. Single ferromagnetic behaviour of nanopowders with $Fe_3C$. J Magn Magn Mater, 304, e787 (2006). https://doi.org/10.1016/j.jmmm.2006.02.224.   DOI
19 Dong XL, Zhang ZD, Xiao QF, Zhao XG, Chuang YC, Jin SR, Sun WM, Li ZJ, Zheng ZX, Yang H. Characterization of ultrafine ${\gamma}$-Fe(C), ${\alpha}$-Fe(C) and Fe3C particles synthesized by arcdischarge in methane. J Mater Sci, 33, 1915 (1998). https://doi.org/10.1023/A:1004369708540.   DOI
20 Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol, 130, 457 (2013). https://doi.org/10.1016/j.biortech.2012.11.132.   DOI
21 Lee HW, Park RS, Park SH, Jung SC, Jeon JK, Kim SC, Chung JD, Choi WG, Park YK. $Cu^{2+}$ ion reduction in wastewater over RDFderived char. Carbon Lett, 18, 49 (2016). https://doi.org/10.5714/CL.2016.18.049.   DOI
22 Park H, Myung NV, Jung H, Choi H. As(V) remediation using electrochemically synthesized maghemite nanoparticles. J Nanopart Res, 11, 1981 (2009). https://doi.org/10.1007/s11051-008-9558-x.   DOI
23 Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S. Removal of arsenic from water streams: an overview of available techniques. Clean Technol Environ Policy, 10, 89 (2008). https://doi.org/10.1007/s10098-007-0098-3.   DOI
24 Zhang H, Shi H, Chen J, Zhao K, Wang L, Hao Y. Elemental mercury removal from syngas at high-temperature using activated charpyrolyzed from biomass and lignite. Korean J Chem Eng, 33, 3134, (2016). https://doi.org/10.1007/s11814-016-0182-7.   DOI
25 Bailey SE, Olin TJ, Bricka RM, Adrian DD. A review of potentially low-cost sorbents for heavy metals. Water Res, 33, 2469 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8.   DOI
26 Zubrik A, Matik M, Hredzak S, Lovas M, Dankova Z, Kovacova M, Briancin J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Cleaner Prod, 143, 643 (2017). https://doi.org/10.1016/j.jclepro.2016.12.061.   DOI
27 Nguyen Thanh D, Singh M, Ulbrich P, Strnadova N, Stepanek F. Perlite incorporating ${\gamma}-Fe_2O_3$ and ${\alpha}-MnO_2$ nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal. Sep Purif Technol, 82, 93 (2011). https://doi.org/10.1016/j.seppur.2011.08.030.   DOI
28 Xue Y, Gao B, Yao Y, Inyang M, Zhang M, Zimmerman AR, Ro KS. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem Eng J, 200-202, 673 (2012). https://doi.org/10.1016/j.cej.2012.06.116.   DOI
29 Gu Z, Fang J, Deng B. Preparation and evaluation of GAC-based iron-containing adsorbents for arsenic removal. Environ Sci Technol, 39, 3833 (2005). https://doi.org/10.1021/es048179r.   DOI
30 Chowdhury SR, Yanful EK. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage, 91, 2238 (2010). https://doi.org/10.1016/j.jenvman.2010.06.003.   DOI
31 Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ. Selfassembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater, 18, 2426 (2006). https://doi.org/10.1002/adma.200600504.   DOI
32 Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D. Arsenic (V) adsorption on $Fe_3O_4$ nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci, 359, 261 (2011). https://doi.org/10.1016/j.jcis.2011.02.071.   DOI
33 Lee H, Park RS, Lee HW, Hong Y, Lee Y, Park SH, Jung SC, Yoo KS, Jeon JK, Park YK. Adsorptive removal of atmospheric pollutants over Pyropia tenera chars. Carbon Lett, 19, 79 (2016). https://doi.org/10.5714/CL.2016.19.079.   DOI
34 Magnacca G, Guerretta F, Vizintin A, Benzi P, Valsania MC, Nistico R. Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions. Appl Surf Sci, 427, 883 (2018). https://doi.org/10.1016/j.apsusc.2017.07.277.   DOI
35 Cha JS, Park SH, Jung SC, Ryu C, Jeon JK, Shin MC, Park YK. Production and utilization of biochar: a review. J Ind Eng Chem, 40, 1 (2016). https://doi.org/10.1016/j.jiec.2016.06.002.   DOI
36 Shen G, Xu Y, Liu B. Preparation and adsorption properties of magnetic mesoporous $Fe_3C$/carbon aerogel for arsenic removal from water. Desalin Water Treat, 57, 24467 (2016). https://doi.org/10.1080/19443994.2016.1138895.   DOI
37 Mehta D, Mazumdar S, Singh SK. Magnetic adsorbents for the treatment of water/wastewater: a review. J Water Process Eng, 7, 244 (2015). https://doi.org/10.1016/j.jwpe.2015.07.001.   DOI
38 Park SH, Cho HJ, Ryu C, Park YK. Removal of copper(II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera. J Ind Eng Chem, 36, 314 (2016). https://doi.org/10.1016/j.jiec.2016.02.021.   DOI
39 Ahmadi M, Kouhgardi E, Ramavandi B. Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters. Korean J Chem Eng, 33, 2589 (2016). https://doi.org/10.1007/s11814-016-0135-1.   DOI
40 Li G, Zhu W, Zhu L, Chai X. Effect of pyrolytic temperature on the adsorptive removal of p-benzoquinone, tetracycline, and polyvinyl alcohol by the biochars from sugarcane bagasse. Korean J Chem Eng, 33, 2215 (2016). https://doi.org/10.1007/s11814-016-0067-9.   DOI
41 Zhu J, Yu JX, Chen JD, Zhang JS, Tang JQ, Xu YL, Zhang YF, Chi RA. Effects of co-ion initial concentration ratio on removal of $Pb^{2+}$ from aqueous solution by modified sugarcane bagasse. Korean J Chem Eng, 34, 1721 (2017). https://doi.org/10.1007/s11814-017-0061-x.   DOI
42 Spokas KA, Koskinen WC, Baker JM, Reicosky DC. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77, 574 (2009). https://doi.org/10.1016/j.chemosphere. 2009.06.053.   DOI
43 Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol, 175, 391 (2015). https://doi.org/10.1016/j.biortech.2014.10.104.   DOI
44 Fathy NA, Girgis BS, Khalil LB, Farah JY. Utilization of cotton stalks-biomass waste in the production of carbon adsorbents by KOH activation for removal of dye-contaminated water. Carbon Lett, 11, 224 (2010). https://doi.org/10.5714/cl.2010.11.3.224.   DOI
45 Jin Y, Liu F, Tong M, Hou Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J Hazard Mater, 227-228, 461 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.004.   DOI
46 Feng L, Cao M, Ma X, Zhu Y, Hu C. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater, 217-218, 439 (2012). https://doi.org/10.1016/j.jhazmat.2012.03.073.   DOI
47 Tang W, Su Y, Li Q, Gao S, Shang JK. Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res, 47, 3624 (2013). https://doi.org/10.1016/j.watres.2013.04.023.   DOI
48 Tu YJ, You CF, Chang CK, Wang SL, Chan TS. Arsenate adsorption from water using a novel fabricated copper ferrite. Chem Eng J, 198-199, 440 (2012). https://doi.org/10.1016/j.cej.2012.06.006.   DOI
49 Gallios GP, Vaclavikova M. Removal of chromium (VI) from water streams: a thermodynamic study. Environ Chem Lett, 6, 235 (2008). https://doi.org/10.1007/s10311-007-0128-8.   DOI
50 Zhang G, Qu J, Liu H, Cooper AT, Wu R. $CuFe_2O_4$/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere, 68, 1058 (2007). https://doi.org/10.1016/j.chemosphere.2007.01.081.   DOI
51 Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renewable Sustainable Energy Rev, 67, 257 (2017). https://doi.org/10.1016/j.rser.2016.09.057.   DOI
52 Safarik I, Horska K, Pospiskova K, Filip J, Safarikova M. Mechanochemical synthesis of magnetically responsive materials from non-magnetic precursors. Mater Lett, 126, 202 (2014). https://doi.org/10.1016/j.matlet.2014.04.045.   DOI
53 Mubarak NM, Fo YT, Al-Salim HS, Sahu JN, Abdullah EC, Nizamuddin S, Jayakumar NS, Ganesan P. Removal of methylene blue and orange-G from waste water using magnetic biochar. Int J Nanosci, 14, 1550009 (2015). https://doi.org/10.1142/S0219581X1550009X.   DOI
54 Jiang X, Shen D. Pb(II) ion adsorption by biomass-based carbonaceous fiber modified by the integrated oxidation and vulcanization. Korean J Chem Eng, 34, 2619 (2017). https://doi.org/10.1007/s11814-017-0162-6.   DOI
55 Fan L, Luo C, Sun M, Li X, Lu F, Qiu H. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresour Technol, 114, 703 (2012). https://doi.org/10.1016/j.biortech.2012.02.067.   DOI
56 Liu Z, Zhang FS, Sasai R. Arsenate removal from water using $Fe_3O_4$-loaded activated carbon prepared from waste biomass. Chem Eng J, 160, 57 (2010). https://doi.org/10.1016/j.cej.2010.03.003.   DOI
57 Thines KR, Abdullah EC, Ruthiraan M, Mubarak NM. Production of magnetic biochar derived from durian’s rind at vacuum condition for removal of methylene blue pigments from aqueous solution. Int J Chem Eng, 2, 13 (2015).
58 Zhang X, Zhang P, Wu Z, Zhang L, Zeng G, Zhou C. Adsorption of methylene blue onto humic acid-coated $Fe_3O_4$ nanoparticles. Colloids Surf A Physicochem Eng Aspects, 435, 85 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.056.   DOI
59 Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J Hazard Mater, 192, 1515 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.068.   DOI