• Title/Summary/Keyword: microstructure hardness

Search Result 1,343, Processing Time 0.029 seconds

Deposition Characteristics and Mechanical Properties of Stainless Steel 316L Fabricated via Directed Energy Deposition (에너지 제어 용착을 이용한 스테인리스 316L의 적층 특성 및 기계적 물성 평가)

  • Yang, Seung-weon;Lee, Hyub;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.59-69
    • /
    • 2021
  • Directed energy deposition (DED) is an additive manufacturing technology involving a focused high-power laser or electron beam propagating over the substrate, resulting in melt pool formation while simultaneously supplying metal powder to the melt pool area to deposit the material. DED is performed to repair and strengthen parts in various applications, as it can be easily integrate local area cladding and cross-material deposition. In this study, we characterize stainless steel 316 L parts fabricated via DED based on various deposition conditions and geometries to widen the application of DED. The deposition characteristics are investigated by varying the laser power and powder feed rate. Multilayer deposition with a laser power of 362 W and a powder feed rate of 6.61 g/min indicate a height closest to the design value while affording high surface quality. The microhardness of the specimen increases from the top to the bottom of the deposited area. Tensile tests of specimens with two different deposition directions indicate that horizontally long specimens with respect to a substrate demonstrate a higher ultimate tensile strength and yield strength than vertically long specimens with lower elongation.

Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys (중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석)

  • Park, Chan Woong;Adomako, Nana Kwabena;Lee, Min Gyu;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.

Effect of Austempering on Microstructure and Mechanical Properties of High-Carbon Nano-Bainite Steels (고탄소 나노 베이나이트강의 미세조직과 기계적 특성에 미치는 오스템퍼링의 영향)

  • Lee, J.M.;Ko, S.W.;Ham, J.H.;Song, Y.B.;Kim, H.K.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2019
  • This study deals with the effect of austempering temperature and time on the microstructures and mechanical properties of high-carbon nano-bainite steels. Although all the austempered specimens are mainly composed of bainite, martensite, and retained austenite, the specimens which are austempered at lower temperatures contain finer packets of bainite. As the duration for austempering increases, bainite packets are clearly seen due to larger amount of carbon atoms being redistributes into bainite and retained austenite during bainite transformation. As the austempering time increases, the hardness of the specimens gradually decreases as a result of lower martensite volume fraction, and later increases again due to the formation of nano-bainite structure. The Charpy impact test results indicate that the impact toughness of the austempered specimens can be improved if the formation of nano-bainite structure and the transformation induced plasticity effect of retained austenite are optimized at higher austempering temperature.

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components (발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성)

  • Kwak, Ho-Du;Oh, Weontae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.116-121
    • /
    • 2019
  • Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

Immiscibility, nucleation and mechanical properties in the lithia-baria-silica system

  • Ertug, Burcu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.394-400
    • /
    • 2018
  • The current work investigates the effects of nucleation heat treatments, on the microstructure and mechanical properties of a novel silicate glass in $Li_2O-BaO-SiO_2$ system with 1 mol% $P_2O_5$ as nucleating agent. As-cast glass was exposed to nucleation heat treatments at $490-550^{\circ}C$ for 1-3 h. The microstructural examination was performed by SEM/EDS. The highest Vickers microhardness was determined to be 650 Hv for the sample heat treated at $550^{\circ}C$ for 1 h. The increase in the nucleation time also affected Vickers microhardness and the highest one was determined to be 600 Hv after nucleation for 3 h. The fracture toughness, $K_{IC}$ reached $2.51MPa.m^{1/2}$ after nucleation at $550^{\circ}C$ for 1 h. The nucleation temperatures had a more pronounced effect on the fracture toughnesses in comparison to nucleation times. The indentation toughness data was used to determine Weibull parameters from Ln ln [1/(1-P)]-$lnK_{IC}$ plots. Weibull modulus, m of the samples nucleated at 500, 510, 530, $550^{\circ}C$ for 1h. and $540^{\circ}C$ for 2 h. were determined similarly to be 3.8, 3.5, 4.7 and 3.9, respectively. The rest of the samples indicated higher Weibull moduli, which may be attributed to the formations of microcracks due to the mismatch in between newly formed crystals and remaining glassy matrix.

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조 Fe-Si3N4 복합재료의 합성 및 급속소결)

  • Ko, In-Yong;Du, Song-Lee;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.715-719
    • /
    • 2011
  • Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials (금속 생체재료를 위한 Sn 함량에 따른 Zr-7Cu 합금설계)

  • Kim, Min-Suk;Kim, Chung-Seok
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.690-696
    • /
    • 2021
  • The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUID-VSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 10-8 cm3g-1. Corrosion tests of zirconium-based alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 ㎂/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.

Effect of different concentrations of hypotaurine on melanosis and quality of Pacific white shrimp (Penaeus vannamei) during refrigeration

  • Zhou, Jiaying;Ying, Yubin;Zhou, Yaqi;Li, Gaoshang;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.4
    • /
    • pp.231-242
    • /
    • 2022
  • Effect of different concentrations of hypotaurine (HTU) on melanosis and quality of shrimps during 10 d storage in ice were studied. During refrigeration, the total plate count and total volatile basic nitrogen of shrimps treated with 20 g/L HTU were the lowest, and the hardness and microstructure were the best. Moreover, the score of melanoses, pH and total bile acid of shrimps treated with 20 g/L HTU were also low. Sensory evaluation showed that HTU treatment could make the shelf life of shrimps 3-4 days longer compared with the control. Based on the above physical and chemical indexes, 20 g/L HTU showed great potential as a safe inhibitor in the treatment of shrimps' melanosis.