Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.690

Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials  

Kim, Min-Suk (Department of Advanced Materials Engineering, Chosun University)
Kim, Chung-Seok (Department of Materials Science and Engineering, Chosun University)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 690-696 More about this Journal
Abstract
The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUID-VSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 10-8 cm3g-1. Corrosion tests of zirconium-based alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 ㎂/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.
Keywords
biomaterials; zirconium; dental implant; elastic modulus; magnetic susceptibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Suresh N. Kadam, Kailash R. Jagdeo and M. R. Nair, IRJES, 3, 30 (2014).
2 S. Vadlakonda, R. Banerjee, A. Puthcode and R. Mirshams, Mater. Sci. Eng., A, 434, 372 (2006).   DOI
3 K. T. Park, T. H. Lee, N. C. Jo, H. H. Nersisyan, B. S. Chun, H. H. Lee and J. H. Lee, J. Nucl. Mater., 436, 130 (2013).   DOI
4 D. D. Kiradzhiyska and R. D. Mantcheva, Folia Med., 61, 34 (2019).   DOI
5 K. Miura, N. Yamada, S. Hanada, T.-K. Jung and E. Itoi, Acta Biomater., 7, 2320 (2011).   DOI
6 J.-M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu and Y. S. Yu, Mater. Sci. Eng., C, 24, 585 (2004).   DOI
7 G. R. Parr, L. K. Gardner and R. W. Toth, J. Prosthet. Dent, 54, 410 (1985).   DOI
8 C. Zhang, L. Zhang, L. Liu, L. Lv, L. Gao, N. Liu, X. Wang and J. Ye, J. Orthop. Surg. Res., 15, 40 (2020).   DOI
9 M. Long and H. J. Rack, Biomater, 19, 1621 (1998).   DOI
10 S. Nag, R. Banerjee and H. Fraser, Acta Biomater., 3, 369 (2007).   DOI
11 F. Shafiei, E. Honda, H. Takahashi and T. Sasaki, J. Dent. Res., 82, 602 (2003).   DOI
12 T. Ernstberger, G. Heidrich, T. Bruening, S. Krefft, G. Buchhorn and H. M. Klinger, Eur. Spine. J., 16, 179 (2007).   DOI
13 H. D. Kocasarac, G. Ustaoglu, S. Bayrak, R. Katkar, H. Geha and M. Noujeim, Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 128, e161 (2019).
14 Y. Okazaki and E. Gotoh, Biomater, 26, 11 (2005).   DOI
15 W. M. Spees, D. A. Yablonskiy, M. C. Oswood and J. J. H. Ackerman, Magn. Reson. Med., 45, 533 (2001).   DOI
16 A. Mehjabeen, T. Song, W. Xu, H. P. Tang and M. Qian, Adv. Eng. Mater., 20, 1800207 (2018).   DOI
17 H. Okamoto, J. Phase Equilib. Diffus., 31, 411 (2010).   DOI
18 G. J. Hwang, Master's Thesis, p.1, Chosun University, Seoul, Republic of Korea (2018).
19 Li, Y. Zhan and W. Jiang, Mater. Des., 34, 479 (2012).   DOI
20 G. P. Arrighini, M. Maestro and R. Moccia, J. Chem. Phys., 49, 882 (1968).   DOI
21 F. Y. Zhou, K. J. Qiu, H. F. Li, T. Huang, B. L. Wang, L. Li and Y. F. Zheng, Acta Biomater., 9, 9578 (2013).   DOI
22 F. Y. Zhou, K. J. Qiu, D. Bian, Y. F. Zheng and J. P. Lin, J. Mater. Sci. Technol., 30, 299 (2014).   DOI
23 S. G. S. Charlena and M. Fajar, J. Phys. Conf., 776, 012056 (2016).   DOI
24 J. M. Salman and M. L. Aziz, IQJMME, 19, 138 (2019).   DOI
25 R. Xue, D. Wang, D. Yang, L. Zhang, X. Xu, L. Liu and D. Wu, Materials, 13, 5130 (2020).   DOI
26 J. F. Schenck, Med. Phys., 23, 815 (1996).   DOI
27 Y. Yan and Y. Han, Surf. Coat. Technol., 201, 5692 (2007).   DOI
28 C. Wei, L. Luo, Z. Wu, J. Zhang, S. Su and Y. Zhan, J. Mech. Behav. Biomed. Mater., 111, 104017 (2020).   DOI
29 M. Niinomi, Mater. Sci. Eng., A, 243, 231 (1998).   DOI
30 V. Jain, O. Abdulmalik, K. J. Propert and F. W. Wehrli, Magn. Reson. Med., 68, 863 (2012).   DOI
31 M.-J. Kim, Y.-W. Jang, Y.-H. Yoo, J.-J. Kim and J.-G. Kim, J. Korean Electrochem. Soc., 13, 96 (2010).   DOI
32 N. Eliaz, Materials, 12, 407 (2019).   DOI