DOI QR코드

DOI QR Code

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ngo, Trong Si (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lee, Jeongkuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Park, Yun Chang (Measurement and Analysis Team, National NanoFab Center) ;
  • Hong, Sun Ig (Department of Materials Science and Engineering, Chungnam National University) ;
  • Na, Young-Sang (Metallic Materials Division, Korea Institute of Materials Science)
  • Received : 2017.12.28
  • Accepted : 2018.05.04
  • Published : 2018.11.20

Abstract

Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Keywords

Acknowledgement

Supported by : Chungnam National University

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004) https://doi.org/10.1002/adem.200300567
  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004) https://doi.org/10.1016/j.msea.2003.10.257
  3. K.G. Pradeep, N. Wanderka, P. Choi, J. Banhart, B.S. Murty, D. Raabe, Acta Mater. 61, 4696 (2013) https://doi.org/10.1016/j.actamat.2013.04.059
  4. A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013) https://doi.org/10.1007/s11837-013-0771-4
  5. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66, 1984 (2014) https://doi.org/10.1007/s11837-014-1085-x
  6. A. Marshal, K.G. Pradeep, D. Music, S. Zaefferer, P.S. De, J.M. Schneider, J. Alloys Compd. 691, 683 (2017) https://doi.org/10.1016/j.jallcom.2016.08.326
  7. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014) https://doi.org/10.1126/science.1254581
  8. Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers, Sci. Rep. 7, 42742 (2017) https://doi.org/10.1038/srep42742
  9. B. Ren, Z.X. Liu, D.M. Li, L. Shi, B. Cai, M.X. Wang, Mater. Corros. 63, 828 (2012)
  10. Y. Shi, B. Yang, P.K. Liaw, Metals 7, 43 (2017) https://doi.org/10.3390/met7020043
  11. L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Intermetallics 17, 266 (2009) https://doi.org/10.1016/j.intermet.2008.08.012
  12. S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010) https://doi.org/10.1016/j.msea.2010.05.052
  13. M.-H. Tsai, H. Yuan, G. Cheng, W. Xu, W.W. Jian, M.-H. Chuang, C.-C. Juan, A.-C. Yeh, S.-J. Lin, Y. Zhu, Intermetallics 33, 81 (2013) https://doi.org/10.1016/j.intermet.2012.09.022
  14. V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Surf. Coat. Technol. 204, 1989 (2010) https://doi.org/10.1016/j.surfcoat.2009.12.006
  15. Z.F. Wu, X.D. Wang, Q.P. Cao, G.H. Zhao, J.X. Li, D.X. Zhang, J.-J. Zhu, J.Z. Jiang, J. Alloys Compd. 609, 137 (2014) https://doi.org/10.1016/j.jallcom.2014.04.094
  16. Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, P.K. Liaw, Mater. Res. Lett. 3, 203 (2015) https://doi.org/10.1080/21663831.2015.1048904
  17. B.R. Braeckman, F. Misjak, G. Radnoczi, D. Depla, Thin Solid Films 616, 703 (2016) https://doi.org/10.1016/j.tsf.2016.09.021
  18. P.-C. Lin, C.-Y. Cheng, J.-W. Yeh, T.-S. Chin, Entropy 18, 308 (2016) https://doi.org/10.3390/e18080308
  19. L. Xie, P. Brault, A.-L. Thomann, X. Yang, Y. Zhang, G. Shang, Intermetallics 68, 78 (2016) https://doi.org/10.1016/j.intermet.2015.09.008
  20. T.-K. Chen, M.-S. Wong, J. Mater. Res. 23, 3075 (2008) https://doi.org/10.1557/JMR.2008.0371
  21. T.-K. Chen, M.-S. Wong, Surf. Coat. Technol. 203, 495 (2008) https://doi.org/10.1016/j.surfcoat.2008.05.023
  22. Y.-S. Huang, L. Chen, H.-W. Lui, M.-H. Cai, J.-W. Yeh, Mater. Sci. Eng. A 457, 77 (2007) https://doi.org/10.1016/j.msea.2006.12.001
  23. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188-189, 193 (2004) https://doi.org/10.1016/j.surfcoat.2004.08.023
  24. P.-K. Huang, J.-W. Yeh, Thin Solid Films 518, 180 (2009) https://doi.org/10.1016/j.tsf.2009.06.020
  25. B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Appl. Surf. Sci. 257, 7172 (2011) https://doi.org/10.1016/j.apsusc.2011.03.083
  26. R.-S. Yu, R.-H. Huang, C.-M. Lee, F.-S. Shieu, Appl. Surf. Sci. 263, 58 (2012) https://doi.org/10.1016/j.apsusc.2012.08.109
  27. G. Laplanche, U.F. Volkert, G. Eggeler, E.P. George, Oxid. Met. 85, 629 (2016) https://doi.org/10.1007/s11085-016-9616-1
  28. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Pearson, Upper Saddle River, 2001)
  29. M.D. Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry (Cambridge University Press, Cambridge, 2012)
  30. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992) https://doi.org/10.1557/JMR.1992.1564
  31. H. Najafi, A. Karimi, D. Alexander, P. Dessarzin, M. Morstein, Thin Solid Films 549, 224 (2013) https://doi.org/10.1016/j.tsf.2013.06.062
  32. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, J. Matejicek, Mater. Sci. Eng. A 689, 252 (2017) https://doi.org/10.1016/j.msea.2017.02.068

Cited by

  1. Effect of Surface Roughness on the Formation of Nano-to-Mirco Patterns Using Pattern Transfer Printing vol.58, pp.1, 2018, https://doi.org/10.3365/kjmm.2020.58.1.26
  2. Structural and Mechanical Properties of AlCoCrNi High Entropy Nitride Films: Influence of Process Pressure vol.10, pp.1, 2018, https://doi.org/10.3390/coatings10010010
  3. The growth of a multi-principal element (CoCrFeMnNi) oxynitride film by direct current magnetron sputtering using air as reactive gas vol.421, pp.None, 2018, https://doi.org/10.1016/j.surfcoat.2021.127433
  4. Tuning of structure, grain orientation and mechanical properties in reactively sputtered (Al,Mo,Ta,V,W)N vol.213, pp.None, 2018, https://doi.org/10.1016/j.matdes.2021.110346