Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.9.715

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating  

Ko, In-Yong (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University)
Du, Song-Lee (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University)
Doh, Jung-Mann (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University)
Yoon, Jin-Kook (Advanced Functional Materials Research Center, Korea Institute of Science and Technology)
Park, Sang-Whan (Advanced Functional Materials Research Center, Korea Institute of Science and Technology)
Shon, In-Jin (Division of Advanced Materials Engineering and Research Center of Industrial Technology, Engineering College, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.9, 2011 , pp. 715-719 More about this Journal
Abstract
Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.
Keywords
$Fe-Si_3N_4$; rapid sintering; hardness; fracture toughness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, Intermetallics 9, 621 (2001).   DOI   ScienceOn
2 J. Karch, R. Birringer, and H. Gleiter. Nature 330, 556 (1987).   DOI   ScienceOn
3 A. M. George, J. Iniguuze, and L. Bellaiche, Nature 413, 54 (2001).   DOI   ScienceOn
4 D. Hreniak and W. Strek, J. Alloys Comp. 341, 183 (2002).   DOI   ScienceOn
5 E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 241, 207(2002)
6 Z. Fang and J.W. Eason, Int. J. Refrac. 13, 297 (1995).   DOI   ScienceOn
7 I.Y. Ko, B.R. Kim, K.S. Nam, B.M. M, B.S. Lee. and I.J. Shon, Met. Mater. Int. 15, 399 (2009).   DOI   ScienceOn
8 N.-R. Kim, K.-I. Na, W.B. Kim, S.-W. Chon, I.-J. Shon, Kor. J. Met. Mater. 48, 989 (2010).   DOI   ScienceOn
9 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002) .   DOI   ScienceOn
10 J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka- Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI   ScienceOn
11 J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics. 12, 589 (2004).   DOI   ScienceOn
12 J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI   ScienceOn
13 H.L. Wang and M.H. Hon, Ceramics International 25, 267 (1999).   DOI   ScienceOn
14 A. Vuckovic, V. Boskovic, and V. Krstic, Ceramics International 32, 303 (2006).   DOI   ScienceOn