Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Published : 2019.02.01

Abstract

Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

Keywords

References

  1. J. Wang, D. Chen, E.H. Jordan, and M. Gell, J. Am. Ceram. Soc. 93[11] (2010) 3535-3538. https://doi.org/10.1111/j.1551-2916.2010.04071.x
  2. S. Xu, J. Li, C. Li, Y. Pan, and J. Guo, J. Am. Ceram. Soc. 98[3] (2015) 1019-1026. https://doi.org/10.1111/jace.13375
  3. S. Xu, J. Li, C. Li, Y. Pan, and J. Guo, J. Am. Ceram. Soc. 98[9] (2015) 2796-2802. https://doi.org/10.1111/jace.13681
  4. J. Xie, X. Mao, X. Li, B. Jiang, and L. Zhang, Ceram. Int. 43[1] (2017) 40-44. https://doi.org/10.1016/j.ceramint.2016.08.117
  5. B.H. Kear, R. Sadangi, V. Shukla, T. Stefanik, and R. Gentilman, Proc. of SPIE 5786 (2005) 227-233.
  6. J. Wang, L. Zhang, D. Chen, E.H. Jordan, and M. Gell, J. Am. Ceram. Soc. 95[3] (2012) 1033-1037. https://doi.org/10.1111/j.1551-2916.2011.04928.x
  7. D.C. Harris, L.R. Cambrea, L.F. Johnson, R.T. Seaver, M. Baronowski, R. Gentilman, C.S. Nordahl, T. Gattuso, S. Silberstein, P. Rogan, T. Hartnett, B. Zelinski, W. Sunne, E. Fest, W.H. Poisl, C.B. Willingham, G. Turri, C. Warren, M. Bass, D.E. Zelmon, and S.M. Goodrich, J. Am. Ceram. Soc. 96[12] (2013) 3828-3835. https://doi.org/10.1111/jace.12589
  8. K. Morita, B.-N. Kim, K. Hiraga, and H. Yoshida, Scr. Mater. 58[12] (2008) 1114-1117. https://doi.org/10.1016/j.scriptamat.2008.02.008
  9. K.T. Kim, T. Min, and D.W. Kim, J. Korean Powder Metall. Inst. 23[4] (2016) 263-269. https://doi.org/10.4150/KPMI.2016.23.4.263
  10. J.-K. Han, D.-W. Shin, B. Madavali, and S.-J. Hong, J. Korean Powder Metall. Inst. 24[2] (2017) 115-121. https://doi.org/10.4150/KPMI.2017.24.2.115
  11. S. Xu, J. Li, H. Kou, Y. Shi, Y. Pan, and J. Guo, Ceram. Int. 41[2] (2015) 3312-3317. https://doi.org/10.1016/j.ceramint.2014.10.120
  12. D.T. Jiang and A.K. Mukherjee, J. Am. Ceram. Soc. 93[3] (2010) 769-773. https://doi.org/10.1111/j.1551-2916.2009.03444.x
  13. L. Huang, W. Yao, J. Liu, A.K. Mukherjee, and J.M. Schoenung, Scr. Mater. 75 (2014) 18-21. https://doi.org/10.1016/j.scriptamat.2013.11.006
  14. B.-N. Kim, K. Hiraga. K. Morita, and H. Yoshida, Scr. Mater. 57 (2007) 607-610. https://doi.org/10.1016/j.scriptamat.2007.06.009
  15. R. Apetz, M.P.B. and van Bruggen, J. Am. Ceram. Soc. 86[3] (2003) 480-486. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x
  16. B.-N. Kim, K. Higara, K. Morita, and H. Yoshida, J. Eur. Ceram. Soc. 29[2] (2009) 323-327. https://doi.org/10.1016/j.jeurceramsoc.2008.03.015
  17. K. Morita, B.-N. Kim, H. Yoshida, and K. Hiraga. J. Am. Ceram. Soc. 92[6] (2009) 1208-1216. https://doi.org/10.1111/j.1551-2916.2009.03074.x
  18. H.J. Ma, W.K. Jung, C. Baek, and D.K. Kim, J. Eur. Ceram. Soc. 37[15] (2017) 4902-4911. https://doi.org/10.1016/j.jeurceramsoc.2017.05.049
  19. J. Koike, S. Tashima, S. Wakiya, K. Maruyama, and H. Oikawa, Mater. Sci. Eng. A220[1-2] (1996) 26-34.