• 제목/요약/키워드: microstructure evolution

검색결과 423건 처리시간 0.023초

단순 전단변형에 의한 15Cr 산화물 분산강화 강의 미세조직 변화 (Microstructure Evolution of 15Cr ODS Steel by a Simple Torsion Test)

  • 진현주;강석훈;김태규
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.271-276
    • /
    • 2014
  • 15Cr-1Mo base oxide dispersion strengthened (ODS) steel which is considered to be as a promising candidate for high- temperature components in nuclear fusion and fission systems because of its excellent high temperature strength, corrosion and radiation resistance was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Torsion tests were performed at room temperature, leading to two different shear strain routes in the forward and reverse directions. In this study, microstructure evolution of the ODS steel during simple shearing was investigated. Fine grained microstructure and a cell structure of dislocation with low angle boundaries were characterized with shear strain in the shear deformed region by electron backscattered diffraction (EBSD). Grain refinement with shear strain resulted in an increase in hardness. After the forward-reverse torsion, the hardness value was measured to be higher than that of the forward torsion only with an identical shear strain amount, suggesting that new dislocation cell structures inside the grain were generated, thus resulting in a larger strengthening of the steel.

0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화 (Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels)

  • 정우창
    • 열처리공학회지
    • /
    • 제24권5호
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Al-Mg 합금 박막의 압축응력 완화를 위한 어닐링 공정상의 입자 발달 (Evolution of grains to relieve additional compressive stress developed in Al-Mg alloy films during thermal annealing)

  • 이준성;양지훈;정재인;정용화;곽영진;김상섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.47-51
    • /
    • 2014
  • In this work, a possible mechanism for grain evolution in Al-Mg alloy films during thermal annealing is suggested on the basis of the phase transition and the related residual stress. Al-Mg alloy films with compositions of 14.0 and 18.0 wt% Mg content were deposited on cold-rolled steel substrates by the direct current co-sputtering method using Al and Mg targets. After the deposition, the samples were thermally annealed at $400^{\circ}C$ for 10 min. The featureless, dense cross-sectional microstructure of the as-deposited films turned into a grainy microstructure after the thermal annealing. According to the residual stress evaluated by using the $XRD-sin2{\psi}$ technique and the phase analysis by XRD, it is likely that grains were created in order to relieve the additional accumulation of residual stress originating from the phase transition from face-centered cubic Al (${\alpha}$) to Al3Mg2 (${\beta}$) and Mg (${\delta}$) phases, suggesting interplay between the microstructure and residual stress.

  • PDF

304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측 (Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel)

  • 한형기;유연철;김성일
    • 소성∙가공
    • /
    • 제9권1호
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF

금속분말 사출성형된 순-구리의 미세조직에 미치는 고온 소결조건의 영향 (Effect of High-Temperature Sintering Condition on Microstructure Evolution of Pure-Cu Subjected to Metal Injection Molding)

  • 한다인;수하르토노 트리;김동주;이은혜;김종하;고영건
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.240-245
    • /
    • 2022
  • In this study, to achieve good electrical conductivity of a charging terminal component in electric vehicles, we investigated the microstructure evolution of pure-Cu subjected to metal injection molding by controlling the sintering variables, such as temperature and time. Thus, three samples were sintered at temperatures ranging from 1000 ℃ to 1050 ℃ near to the melting temperature of 1085 ℃ for 1 and 10 h after thermal evaporation of binder at 730 ℃. Both procedures were made using a unified furnace under Ar+H2 gas with high purity. The structural observation displayed that the grain size as well as the compactness (a reciprocal of porosity) increased simultaneously as temperature and time increased. This gave rise to high thermal conductivity of 90% IACS together with high density, which was mainly attributed to decrease in fractions of grain boundaries and micro-pores working as effective scattering center for electron movement.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

니켈기 초내열합금의 열간노출에 따른 미세조직 및 기계적 특성 변화 (Evolution of Microstructure and Mechanical Properties of a Ni Base Superalloy during Thermal Exposure)

  • 김인수;최백규;정중은;도정현;정인용;조창용
    • 한국주조공학회지
    • /
    • 제36권5호
    • /
    • pp.159-166
    • /
    • 2016
  • The microstructural evolution of a cast Ni base superalloy, IN738LC, has been investigated after long term exposure at several temperatures. Most of the fine secondary ${\gamma}^{\prime}$ particles resolved after 2000 hour exposure at $816^{\circ}C$. At higher temperatures of $871^{\circ}C$ and $927^{\circ}C$, secondary ${\gamma}^{\prime}$ resolved after 1000 hours of exposure, and cuboidal primary ${\gamma}^{\prime}$ grew with exposure time. During the thermal exposure, ${\sigma}$ phase formed at all tested temperatures, and ${\eta}$ phase was observed around interdendritic regions due to carbide degeneration. The influence of microstructural evolution during thermal exposure on the mechanical properties has been analyzed. The effects of ${\gamma}^{\prime}$ particle growth are more pronounced on the high temperature creep properties than on the room temperature tensile properties.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • 제45권3호
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

Bias를 인가한 DC magnetron sputtering 법으로 증착된 ZnO:Al 박막의 구조적 특성과 RTP의 annealing에 따른 영향 (Effects of rapid thermal annealing and bias sputtering on the structure and properties of ZnO:Al films deposited by DC magnetron sputtering)

  • 박경석;이규석;이성욱;박민우;곽동주;임동건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.500-501
    • /
    • 2005
  • Aluminum doped zinc oxide films (ZnO:Al) were deposited on glass substrate by DC magnetron sputtering from a ZnO target mixed with 2 wt% $Al_2O_3$. The effects of substrate bias on the electrical properties and film structure were studied. Films deposited with positive bias have been annealed at $600^{\circ}C$ using rapid thermal anneal (RTA) process. The effects of RTA on the evolution of film microstructure are to be also studied using X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Positive bias sputtering may induce lattice defects caused by electron bombardments during deposition. The as-deposited film microstructure evolves from the film with high defect density to more stable film condition. The electrical properties of the films after RTA process were also studied and the results were correlated with the evolution of film microstructures.

  • PDF