• Title/Summary/Keyword: microstructure

Search Result 8,094, Processing Time 0.041 seconds

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Factors Effecting the Strength & Durability of Geopolymer Binder: A Review (지오폴리머의 강도와 내구성에 영향을 미치는 요인에 대한 고찰)

  • On, Jeong-Kwon;Kim, Gyu-Yong;Sasui, Sasui;Lee, Yae-Chan;Eu, Ha-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.460-468
    • /
    • 2021
  • Owing to the production of conventional concrete/cement, the climate crises is increasing and is mainly caused greenhouse gas (GHG) emission into the environment by industrial process. To reduce the emission of GHG, and excessive consumption of energy, research on geopolymer binder is increasing as it is environmentally friendly compared to the conventional binders such as Portland cement. The research on improving the strength and durability of geopolymer cement becomes one of the trending researches. Generally, the strength and durability of geopolymer binders are improved by altering alkaline solution & its concentration, the precursor materials and curing temperature & time, which significantly influence the chemical composition and microstructure of geopolymer to which the strength and durability of geopolymers relies. This paper included the detailed discussion on the factors affecting the mechanical properties and durability of geopolymer binder and the influence of reaction mechanism on the strength and durability of geopolymer is also discussed in this paper.

A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber (셀룰로오스 나노섬유를 활용한 해양 방오 코팅제에 관한 기초 연구)

  • Jang, Nag-Seop;Kim, Tae-Kyun;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.469-477
    • /
    • 2021
  • In this study, the mechanical property of anti-fouling coating using CNF was evaluated to prevent the durability and stability of structure exposed the marine environment. Anti-fouling coating using CNF was prepared by CNF, AKD and waste glass powder, and contact angle test, drying time, viscosity analysis and microstructure were performed. When coating on one number of times, It was showed to relatively high hydrophobic performance in steel. And It was confirmed that the contact angle increased as the content of AKD increased in cement mortar. When coating on three number of times, the surface was confirmed super-hydrophobic at maximum of 151.6°. When mixing waste glass powder, the surface was showed to relatively high hydrophobic. It is pseudo plastic fluid when CNF and distilled water were prepared in a ratio of 1:1, And Anti fouling coating is judged to be suitable for use as coating on marine structure.

A Study on Synthesis of Potassium Sulfate used Sodium Sulfate and Potassium Chloride (황산나트륨과 염화칼륨을 사용한 황산칼륨 제조 연구)

  • Kim, Nam-Il;Kim, Tae-Yeon;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • In this study, Na2SO4 and KCl reagents were used to synthesize K2SO4 as a basic study for recycling byproducts generated during the manufacture of steel and cement. The mole ratio of Na2SO4 to KCl, the saturation of the solution, and the stirring temperature were controlled to derive the optimal manufacturing conditions. The microstructure and crystallinity of the materials prepared were evaluated using scanning electron microscopy and X-ray diffraction analysis. Pure K2SO4 was obtained when the mole ratio of Na2SO4 to KCl was 1:6-18, the saturation of the solution was less than 160%, and the stirring temperature was 20℃, 50℃. The optimal manufacturing conditions to maximize the crystallinity and yield of K2SO4 while minimizing the energy consumption were 1:6 mole ratio of Na2SO4 to KCl, 140% saturation of the solution, and 20℃ stirring temperature.

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun;Cheng, Haifeng;Wang, Nannan;Zhou, Shen;Xie, Dongjin;Li, Tingting
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850125.1-1850125.12
    • /
    • 2018
  • To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Linked Color Imaging and Blue Laser Imaging for Upper Gastrointestinal Screening

  • Osawa, Hiroyuki;Miura, Yoshimasa;Takezawa, Takahito;Ino, Yuji;Khurelbaatar, Tsevelnorov;Sagara, Yuichi;Lefor, Alan Kawarai;Yamamoto, Hironori
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.513-526
    • /
    • 2018
  • White light imaging (WLI) may not reveal early upper gastrointestinal cancers. Linked color imaging (LCI) produces bright images in the distant view and is performed for the same screening indications as WLI. LCI and blue laser imaging (BLI) provide excellent visibility of gastric cancers in high color contrast with respect to the surrounding tissue. The characteristic purple and green color of metaplasias on LCI and BLI, respectively, serve to increase the contrast while visualizing gastric cancers regardless of a history of Helicobacter pylori eradication. LCI facilitates color-based recognition of early gastric cancers of all morphological types, including flat lesions or those in an H. pylori-negative normal background mucosa as well as the diagnosis of inflamed mucosae including erosions. LCI reveals changes in mucosal color before the appearance of morphological changes in various gastric lesions. BLI is superior to LCI in the detection of early esophageal cancers and abnormal findings of microstructure and microvasculature in close-up views of upper gastrointestinal cancers. Excellent images can also be obtained with transnasal endoscopy. Using a combination of these modalities allows one to obtain images useful for establishing a diagnosis. It is important to observe esophageal cancers (brown) using BLI and gastric cancers (orange) surrounded by intestinal metaplasia (purple) and duodenal cancers (orange) by LCI.

The Microstructure and the Mechanical Properties of Sintered TiO2-Co Composite Prepared Via Thermal Hydrogenation Method (열 수소화법에 의해 제조된 TiO2-Co 복합분말 SPS 소결체의 미세구조 및 기계적 성질)

  • Ko, Myeongsun;Park, Ilsong;Park, Jeshin
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.290-298
    • /
    • 2019
  • $TiO_2$-particles containing Co grains are fabricated via thermal hydrogenation and selective oxidation of TiCo alloy. For comparison, $TiO_2$-Co composite powders are prepared by two kinds of methods which were the mechanical carbonization and oxidation process, and the conventional mixing process. The microstructural characteristics of the prepared composites are analyzed by X-ray diffraction, field-emission scattering electron microscopy, and transmission electron microscopy. In addition, the composite powders are sintered at $800^{\circ}C$ by spark plasma sintering. The flexural strength and fracture toughness of the sintered samples prepared by thermal hydrogenation and mechanical carbonization are found to be higher than those of the samples prepared by the conventional mixing process. Moreover, the microstructures of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes are found to be similar. The difference in the mechanical properties of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes is attributed to the different sizes of metallic Co particles in the samples.

Scanning Electron Microscopic Study on the Microplastics in Rinse Off Cosmetics (피부 청결 화장품에 첨가된 미세플라스틱의 주사전자현미경적 연구)

  • Kim, Kyung-Sook;Chang, Byung-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.252-257
    • /
    • 2019
  • We investigated the microstructure and morphological characteristics of microplastics added to rinse off cosmetics by scanning electron microscope. The size of the microplastic was in a wide range of sizes, from $250{\mu}m$ to 1.5mm in diameter. The small microplastics were in the shape of elongated particles and the large microplastics were cuboidal. Most cubic microplastics were observed in the form of squares or rectangles. The surface of the cubic microplastic was smoothly observed without protruding portions, but irregularly many gaps were formed. The gap between openings was measured from about $5{\mu}m$ to $20{\mu}m$. It has not been confirmed that these gaps are formed from the surface of the microplastic to the inside there of.

Mechanical Properties of Alpha-Calcium Sulfate Hemihydrate Replaced Concrete for Application to Box Culvert Power Transmission (전력구 콘크리트 구조물 적용을 위한 알파형 반수석고 치환 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Chu, In-Yeop;Lee, Bo-Kyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • This study evaluated the mechanical properties of the alpha-calcium sulfate hemihydrate replaced concrete to reduce the cracking in a box culvert power transmission. After setting the replacement ratio of alpha-calcium sulfate hemihydrate at 0, 6, 9, 12, and 15%, the setting time, compressive strength, and drying shrinkage were measured and the microstructure and crystal structure were analyzed. As a result, it was confirmed that as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the setting time decreased and the compressive strength declined. On the other hand, when the alpha-calcium sulfate hemihydrate was set with 15% of replacement ratio, about 60% reduction in the drying shrinkage was shown compared to that of ordinary Portland cement. Therefore, it is thought that when the concrete replacing the alpha-calcium sulfate hemihydrate is applied to a box culvert power transmission, the cracking reduction performance will be improved, and the improvement of compressive strength will be required.

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.