DOI QR코드

DOI QR Code

A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber

셀룰로오스 나노섬유를 활용한 해양 방오 코팅제에 관한 기초 연구

  • Jang, Nag-Seop (Department of Civil Engineering, Gyeongsang National University) ;
  • Kim, Tae-Kyun (Department of Civil Engineering, Gyeongsang National University) ;
  • Oh, Hong-Seob (Department of Civil Engineering, Gyeongsang National University)
  • 장낙섭 (경상국립대학교 토목공학과) ;
  • 김태균 (경상국립대학교 토목공학과) ;
  • 오홍섭 (경상국립대학교 토목공학과)
  • Received : 2021.09.30
  • Accepted : 2021.11.08
  • Published : 2021.12.30

Abstract

In this study, the mechanical property of anti-fouling coating using CNF was evaluated to prevent the durability and stability of structure exposed the marine environment. Anti-fouling coating using CNF was prepared by CNF, AKD and waste glass powder, and contact angle test, drying time, viscosity analysis and microstructure were performed. When coating on one number of times, It was showed to relatively high hydrophobic performance in steel. And It was confirmed that the contact angle increased as the content of AKD increased in cement mortar. When coating on three number of times, the surface was confirmed super-hydrophobic at maximum of 151.6°. When mixing waste glass powder, the surface was showed to relatively high hydrophobic. It is pseudo plastic fluid when CNF and distilled water were prepared in a ratio of 1:1, And Anti fouling coating is judged to be suitable for use as coating on marine structure.

본 연구에서는 해양환경에 노출된 구조물의 내구성과 안전성 저하를 방지하는 셀룰로오스 방오 코팅제에 대한 기본적인 역학 성능을 평가하였다. 셀룰로오스 나노섬유와 AKD 및 폐유리 미분말을 주요 재료로 구성하여 제조하였으며, 접촉각 시험, 건조 시간, 점성 분석, 미세구조 분석을 실시하였다. 셀룰로오스 방오 코팅제를 1회 코팅할 경우 상대적으로 강재 시편에서 높은 소수성능을 발휘하는 것으로 나타났으며, 시멘트 모르타르에서는 AKD 함유량이 증가할수록 접촉각이 증가하는 것이 확인되었다. 3회 코팅시 최대 151.6°의 초소수성을 표면을 확인하였으며, 폐유리 미분말 혼입시 상대적으로 높은 소수성능을 갖는 것이 나타났다. 셀룰로오스와 증류수를 1:1 비율로 제조할 경우 의가소성 유체에 해당하여 코팅제로의 활용에 적합할 것으로 판단되었다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원의 국토교통기술촉진연구사업(21CTAP-C164039-01)의 지원에 의해 수행되었습니다.

References

  1. Almeida, E., Diamantino, T.C., Sousa, O. (2007). Marine paints: the particular case of antifouling paints, Progress in Organic Coating, 59(1), 2-20. https://doi.org/10.1016/j.porgcoat.2007.01.017
  2. Bae, J.W., Park, G.S., Ru, M.L., Park, G.H. (2019). Antifouling effect of an ultrasonic system operating at different frequencies, Journal of the Korean Society of Marine Environment & Safety, 25(5), 609-616 [in Korean]. https://doi.org/10.7837/kosomes.2019.25.5.609
  3. Chen, H., Yang, J., Hu, Z., Zheng, B., Sun, J., Wo, Q., ... Zhu, R. (2019). Effects of AKD sizing on the morphology and pore distribution properties of OCC fibers, Journal of Nanomaterials, 2019.
  4. Cherian, B.M., Leao, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M., Kottaisamy, M., ... Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications, Carbohydrate Polymers, 86(4), 1790-1798. https://doi.org/10.1016/j.carbpol.2011.07.009
  5. Chhabra, R.P. (2010). Non-newtonian fluids: an introduction, In Rheology of Complex Fluids, 1(10), 3-34. https://doi.org/10.1007/978-1-4419-6494-6_1
  6. Cho, S.H., Ryu, S.N., Hwang, W.B., Yoon, B.S. (2013). Anti-fouling propery of hydrophobic surfaces in sea water, Journal of the Korean Society for Marine Environment and Energy, 16(2), 82-87 [in Korean]. https://doi.org/10.7846/JKOSMEE.2013.16.2.82
  7. Cho, S.W., Hwang, S.Y., Park, J.Y., Oh, D.S. (2021). Nanocellulose and nanochitin-based all-organic biopolymer composites, Polymer Science and Technology, 32(1), 15-20 [in Korean].
  8. De Azeredo, H.M. (2009). Nanocomposites for food packaging applications, Food Research International, 42(9), 1240-1253. https://doi.org/10.1016/j.foodres.2009.03.019
  9. Goo, S.I., Park, H.J., Yook, S.Y., Park, S.Y., Youn, H.J. (2018). Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, Journal of Korea TAPPI, 50(6), 34-41 [in Korean].
  10. Habibi, Y., Lucia, L.A., Rojas, O.J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications, Chemical Reviews, 110(6), 3479-3500. https://doi.org/10.1021/cr900339w
  11. Han, S.Y., Park, C.W., Kim, B.Y., Lee, S.H. (2015). Effect of the addition of various cellulose nanofibers on the properties of sheet of paper mulberry bast fiber, Journal of the Korean Wood Science and Technology, 43(6), 730-739 [in Korean]. https://doi.org/10.5658/WOOD.2015.43.6.730
  12. Hong, S.K., Lee, K.Y. (2013). Superhydrophobic nano patterning techniques for enhanced performance of naval underwater vessels, Journal of Ocean Engineering and Technology, 27(2), 114-120 [in Korean]. https://doi.org/10.5574/KSOE.2013.27.2.114
  13. Isogai, A. (2013). Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science, 59(6), 449-459. https://doi.org/10.1007/s10086-013-1365-z
  14. Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. (2014). Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer, Materials, 7(10), 6919-6929. https://doi.org/10.3390/ma7106919
  15. Jung, D.H., Kim, A.R., Moon, D.S., Lee, S.W., Kim, H.J., Ham, Y.H. (2009). Preliminary experimental study on biofouling in real sea environment, Journal of Ocean Engineering and Technology, 23(6), 39-43 [in Korean].
  16. Kalia, S., Boufi, S., Celli, A., Kango, S. (2014). Nanofibrillated cellulose: surface modification and potential applications, Colloid and Polymer Science, 292(1), 5-31. https://doi.org/10.1007/s00396-013-3112-9
  17. Khalil, H.A., Bhat, A.H., Yusra, A.I. (2012). Green composites from sustainable cellulose nanofibrils: a review, Carbohydrate polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  18. Kim, J.S., Jung, S.H., Kim, J.H., Lee, K.M., Bae, S.H. (2006). Probability-based durability analysis of concrete structures under chloride attack environments, Journal of the Korea Concrete Institute, 18(2), 239-248 [in Korean]. https://doi.org/10.4334/JKCI.2006.18.2.239
  19. Kim, S.H., Lee, J.Y., Jo, H.M., Lee, Y.H. (2020). Study on the multilayer barrier coating using cellulose nanofibrils and internal sizing agent, Journal of Korea TAPPI, 52(6), 47-55 [in Korean].
  20. Kumar, S., Chauhan, V.S., Chakrabarti, S.K. (2016). Separation and analysis techniques for bound and unbound alkyl ketene dimer(AKD) in paper: a review, Arabian Journal of Chemistry, 9, S1636-S1642. https://doi.org/10.1016/j.arabjc.2012.04.019
  21. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012). Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: a review, Carbohydrate Polymers, 90(2), 735-764. https://doi.org/10.1016/j.carbpol.2012.05.026
  22. Lee, B.H., Kim, H.Y., Hyeon, C.Y., Byeon, J.W. (2017). Failure analysis of commercial water-repellent coatings for high temperature plant, Journal of Applied Reliability, 17(1), 78-82 [in Korean].
  23. Lee, C.S., Kim, M.W. (2014). Prediction of service life for marine concrete structures by exposure experiments, Journal of the Korean Society of Hazard Mitigation, 14(3), 341-349. https://doi.org/10.9798/KOSHAM.2014.14.3.341
  24. Lee, D.K, Shin, K.J. (2017). Durability design chart for concrete exposed to chloride environment according to KCI concrete standard specification, Journal of the Korea Concrete Institute, 29(6), 649-656. https://doi.org/10.4334/JKCI.2017.29.6.649
  25. Lee, H.V., Hamid, S.B.A., Zain, S.K. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process, The Scientific World Journal, 2014.
  26. Lee, J.Y., Jo, H.M., Lee, Y.H., Lee, J.Y. (2021) Effect of polyelectrolyte-cationized cellulose nanofibril on the properties of paper, Journal of Korea TAPPI, 53(3), 49-56 [in Korean].
  27. Lee, S.H., Chang, F., Inoue, S., Endo, T. (2010). Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure, Bioresource Technology, 101(19), 7218-7223. https://doi.org/10.1016/j.biortech.2010.04.069
  28. Leung, K.M., Wheeler, J.R., Morritt, D., Crane, M. (2001). Endocrine disruption in fishes and invertebrates: issues for saltwater ecological risk assessment, Coastal and Estuarine Risk Assessment. Lewis Publishers, Boca Raton, 189-216.
  29. Nechyporchuk, O., Belgacem, M.N., Bras, J. (2016). Production of cellulose nanofibrils: a review of recent advances, Industrial Crops and Products, 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  30. Nogi, M., Yano, H. (2008). Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Advanced Materials, 20(10), 1849-1852. https://doi.org/10.1002/adma.200702559
  31. Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. (2011). Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites, Composites Science and Technology, 71(10), 1342-1347. https://doi.org/10.1016/j.compscitech.2011.05.006
  32. Park, S., Kwon, S., Lee, Y., Koh, W.G., Ha, J.W., Lee, S.Y. (2012). Study on anti-biofouling properties of the surfaces treated with perfluoropolyether(PFPE), Applied Chemistry for Engineering, 23(1), 71-76 [in Korean].
  33. Park, Y. (2020). The dyeing properties of mugwort(artemisia princeps) extract using nano-cellulose, Textile Coloration and Finishing, 32(3), 142-149 [in Korean]. https://doi.org/10.5764/TCF.2020.32.3.142
  34. Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, 88, 241-264. https://doi.org/10.1016/j.progpolymsci.2018.09.002
  35. Siro, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494. https://doi.org/10.1007/s10570-010-9405-y
  36. Townsin, R.L. (2003). The ship hull fouling penalty, Biofouling, 19(S1), 9-15. https://doi.org/10.1080/0892701031000088535
  37. Tsujino, M., Noguchi, T., Tamura, M., Kanematsu, M., Maruyama, I. (2007). Application of conventionally recycled coarse aggregate to concrete structure by surface modification treatment, Journal of Advanced Concrete Technology, 5(1), 13-25. https://doi.org/10.3151/jact.5.13
  38. Zinge, C., Kandasubramanian, B. (2020). Nanocellulose based biodegradable polymers, European Polymer Journal, 133, 109758. https://doi.org/10.1016/j.eurpolymj.2020.109758