Browse > Article
http://dx.doi.org/10.14190/JRCR.2021.9.4.469

A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber  

Jang, Nag-Seop (Department of Civil Engineering, Gyeongsang National University)
Kim, Tae-Kyun (Department of Civil Engineering, Gyeongsang National University)
Oh, Hong-Seob (Department of Civil Engineering, Gyeongsang National University)
Publication Information
Journal of the Korean Recycled Construction Resources Institute / v.9, no.4, 2021 , pp. 469-477 More about this Journal
Abstract
In this study, the mechanical property of anti-fouling coating using CNF was evaluated to prevent the durability and stability of structure exposed the marine environment. Anti-fouling coating using CNF was prepared by CNF, AKD and waste glass powder, and contact angle test, drying time, viscosity analysis and microstructure were performed. When coating on one number of times, It was showed to relatively high hydrophobic performance in steel. And It was confirmed that the contact angle increased as the content of AKD increased in cement mortar. When coating on three number of times, the surface was confirmed super-hydrophobic at maximum of 151.6°. When mixing waste glass powder, the surface was showed to relatively high hydrophobic. It is pseudo plastic fluid when CNF and distilled water were prepared in a ratio of 1:1, And Anti fouling coating is judged to be suitable for use as coating on marine structure.
Keywords
Cellulose nanofiber; Anti-Fouling; Hydrophobic; Contact angle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Almeida, E., Diamantino, T.C., Sousa, O. (2007). Marine paints: the particular case of antifouling paints, Progress in Organic Coating, 59(1), 2-20.   DOI
2 Chen, H., Yang, J., Hu, Z., Zheng, B., Sun, J., Wo, Q., ... Zhu, R. (2019). Effects of AKD sizing on the morphology and pore distribution properties of OCC fibers, Journal of Nanomaterials, 2019.
3 Cherian, B.M., Leao, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M., Kottaisamy, M., ... Thomas, S. (2011). Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications, Carbohydrate Polymers, 86(4), 1790-1798.   DOI
4 Cho, S.H., Ryu, S.N., Hwang, W.B., Yoon, B.S. (2013). Anti-fouling propery of hydrophobic surfaces in sea water, Journal of the Korean Society for Marine Environment and Energy, 16(2), 82-87 [in Korean].   DOI
5 Lee, S.H., Chang, F., Inoue, S., Endo, T. (2010). Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure, Bioresource Technology, 101(19), 7218-7223.   DOI
6 Leung, K.M., Wheeler, J.R., Morritt, D., Crane, M. (2001). Endocrine disruption in fishes and invertebrates: issues for saltwater ecological risk assessment, Coastal and Estuarine Risk Assessment. Lewis Publishers, Boca Raton, 189-216.
7 Hong, S.K., Lee, K.Y. (2013). Superhydrophobic nano patterning techniques for enhanced performance of naval underwater vessels, Journal of Ocean Engineering and Technology, 27(2), 114-120 [in Korean].   DOI
8 Isogai, A. (2013). Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science, 59(6), 449-459.   DOI
9 Cho, S.W., Hwang, S.Y., Park, J.Y., Oh, D.S. (2021). Nanocellulose and nanochitin-based all-organic biopolymer composites, Polymer Science and Technology, 32(1), 15-20 [in Korean].
10 Okahisa, Y., Abe, K., Nogi, M., Nakagaito, A.N., Nakatani, T., Yano, H. (2011). Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites, Composites Science and Technology, 71(10), 1342-1347.   DOI
11 Rol, F., Belgacem, M.N., Gandini, A., Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils, Progress in Polymer Science, 88, 241-264.   DOI
12 Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012). Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: a review, Carbohydrate Polymers, 90(2), 735-764.   DOI
13 Townsin, R.L. (2003). The ship hull fouling penalty, Biofouling, 19(S1), 9-15.   DOI
14 Tsujino, M., Noguchi, T., Tamura, M., Kanematsu, M., Maruyama, I. (2007). Application of conventionally recycled coarse aggregate to concrete structure by surface modification treatment, Journal of Advanced Concrete Technology, 5(1), 13-25.   DOI
15 Park, Y. (2020). The dyeing properties of mugwort(artemisia princeps) extract using nano-cellulose, Textile Coloration and Finishing, 32(3), 142-149 [in Korean].   DOI
16 Kim, J.S., Jung, S.H., Kim, J.H., Lee, K.M., Bae, S.H. (2006). Probability-based durability analysis of concrete structures under chloride attack environments, Journal of the Korea Concrete Institute, 18(2), 239-248 [in Korean].   DOI
17 Nogi, M., Yano, H. (2008). Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Advanced Materials, 20(10), 1849-1852.   DOI
18 Habibi, Y., Lucia, L.A., Rojas, O.J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications, Chemical Reviews, 110(6), 3479-3500.   DOI
19 Bae, J.W., Park, G.S., Ru, M.L., Park, G.H. (2019). Antifouling effect of an ultrasonic system operating at different frequencies, Journal of the Korean Society of Marine Environment & Safety, 25(5), 609-616 [in Korean].   DOI
20 Kumar, S., Chauhan, V.S., Chakrabarti, S.K. (2016). Separation and analysis techniques for bound and unbound alkyl ketene dimer(AKD) in paper: a review, Arabian Journal of Chemistry, 9, S1636-S1642.   DOI
21 Lee, C.S., Kim, M.W. (2014). Prediction of service life for marine concrete structures by exposure experiments, Journal of the Korean Society of Hazard Mitigation, 14(3), 341-349.   DOI
22 Lee, D.K, Shin, K.J. (2017). Durability design chart for concrete exposed to chloride environment according to KCI concrete standard specification, Journal of the Korea Concrete Institute, 29(6), 649-656.   DOI
23 Kalia, S., Boufi, S., Celli, A., Kango, S. (2014). Nanofibrillated cellulose: surface modification and potential applications, Colloid and Polymer Science, 292(1), 5-31.   DOI
24 Kim, S.H., Lee, J.Y., Jo, H.M., Lee, Y.H. (2020). Study on the multilayer barrier coating using cellulose nanofibrils and internal sizing agent, Journal of Korea TAPPI, 52(6), 47-55 [in Korean].
25 Lee, B.H., Kim, H.Y., Hyeon, C.Y., Byeon, J.W. (2017). Failure analysis of commercial water-repellent coatings for high temperature plant, Journal of Applied Reliability, 17(1), 78-82 [in Korean].
26 Lee, H.V., Hamid, S.B.A., Zain, S.K. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process, The Scientific World Journal, 2014.
27 Han, S.Y., Park, C.W., Kim, B.Y., Lee, S.H. (2015). Effect of the addition of various cellulose nanofibers on the properties of sheet of paper mulberry bast fiber, Journal of the Korean Wood Science and Technology, 43(6), 730-739 [in Korean].   DOI
28 Chhabra, R.P. (2010). Non-newtonian fluids: an introduction, In Rheology of Complex Fluids, 1(10), 3-34.   DOI
29 De Azeredo, H.M. (2009). Nanocomposites for food packaging applications, Food Research International, 42(9), 1240-1253.   DOI
30 Goo, S.I., Park, H.J., Yook, S.Y., Park, S.Y., Youn, H.J. (2018). Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, Journal of Korea TAPPI, 50(6), 34-41 [in Korean].
31 Iwamoto, S., Yamamoto, S., Lee, S.H., Ito, H., Endo, T. (2014). Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer, Materials, 7(10), 6919-6929.   DOI
32 Zinge, C., Kandasubramanian, B. (2020). Nanocellulose based biodegradable polymers, European Polymer Journal, 133, 109758.   DOI
33 Lee, J.Y., Jo, H.M., Lee, Y.H., Lee, J.Y. (2021) Effect of polyelectrolyte-cationized cellulose nanofibril on the properties of paper, Journal of Korea TAPPI, 53(3), 49-56 [in Korean].
34 Nechyporchuk, O., Belgacem, M.N., Bras, J. (2016). Production of cellulose nanofibrils: a review of recent advances, Industrial Crops and Products, 93, 2-25.   DOI
35 Park, S., Kwon, S., Lee, Y., Koh, W.G., Ha, J.W., Lee, S.Y. (2012). Study on anti-biofouling properties of the surfaces treated with perfluoropolyether(PFPE), Applied Chemistry for Engineering, 23(1), 71-76 [in Korean].
36 Siro, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494.   DOI
37 Khalil, H.A., Bhat, A.H., Yusra, A.I. (2012). Green composites from sustainable cellulose nanofibrils: a review, Carbohydrate polymers, 87(2), 963-979.   DOI
38 Jung, D.H., Kim, A.R., Moon, D.S., Lee, S.W., Kim, H.J., Ham, Y.H. (2009). Preliminary experimental study on biofouling in real sea environment, Journal of Ocean Engineering and Technology, 23(6), 39-43 [in Korean].