Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.4.290

The Microstructure and the Mechanical Properties of Sintered TiO2-Co Composite Prepared Via Thermal Hydrogenation Method  

Ko, Myeongsun (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University)
Park, Ilsong (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University)
Park, Jeshin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, College of Engineering, Chonbuk National University)
Publication Information
Journal of Powder Materials / v.26, no.4, 2019 , pp. 290-298 More about this Journal
Abstract
$TiO_2$-particles containing Co grains are fabricated via thermal hydrogenation and selective oxidation of TiCo alloy. For comparison, $TiO_2$-Co composite powders are prepared by two kinds of methods which were the mechanical carbonization and oxidation process, and the conventional mixing process. The microstructural characteristics of the prepared composites are analyzed by X-ray diffraction, field-emission scattering electron microscopy, and transmission electron microscopy. In addition, the composite powders are sintered at $800^{\circ}C$ by spark plasma sintering. The flexural strength and fracture toughness of the sintered samples prepared by thermal hydrogenation and mechanical carbonization are found to be higher than those of the samples prepared by the conventional mixing process. Moreover, the microstructures of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes are found to be similar. The difference in the mechanical properties of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes is attributed to the different sizes of metallic Co particles in the samples.
Keywords
Ceramic composite; Metallic binder; Thermal hydrogenation; Spark plasma sintering; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Sabetrasekh, H. Tiainen, S. P. Lyngstaddas, J. Reseland and H. Haugen: J. Biomater. Appl., 25 (2011) 559.   DOI
2 A. Roguska, M. Pisarek, A. Belcarz, L. Marcon, M. Holdynski, M. Andrzejczuk and M. J. Czachor: Appl. Surf. Sci., 388 (2016) 775.   DOI
3 I. Ayadi and F. B. Ayed: J. Mech. Behav. Biomed. Mater., 49 (2015) 129.   DOI
4 A. Fomin, I. Rodionov, M. Fomina, A. Steinhauer, N. Petrova, A. Zakharevich, A. Scaptsov and A. N. Gribov: Int. Conf. Electr. Eng., 2 (2014) 1.
5 S. Nachum, N. A. Fleck, M. F. Ashby, A. Colella and P. Matteazzi: J. Mater. Sci. Eng., A, 527 (2010) 5065.   DOI
6 X.-Y. Ni, J. Zhao, J.-L. Sun, F. Gong and Z-L. Li: Int. J. Miner. Metall. Mater., 24 (2017) 826.   DOI
7 E. Bernardo, G. Scarinci, A. Maddalena and S. Hreglich: J. Compos. Part A. Appl. Sci. Manuf., 35 (2004) 17.   DOI
8 S. T. Oh, T. Sekino and K. Niihara: J. Eur. Ceram. Soc., 18 (1998) 31.   DOI
9 S. Skirl, M. Hoffman, K. Bowman, S. Wiederhorn and J. Rodel: J. Acta Mater., 46 (1998) 2493.   DOI
10 G. Krauss, J. Kubler and E. Trentini: J. Mater. Sci. Eng., A, 337 (2002) 315.   DOI
11 A. Marocco, G. Dell''Agli, S. Esposito and M. Pansini: Solid State Sci., 14 (2012) 394.   DOI
12 S. Yim, I. Park and J. Park: Ceram. Int., 4 (2018) 14044.
13 ASTM 6872:2015 Standard Test Method for Dentistry Ceramic materials, Fourthedition, Annual Book of ASTM Standards (2015).
14 K. Niihara, R. Morena and D. P. H. Hasselman: J. Mater. Sci. Lett., 1 (1982) 13.   DOI
15 G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall: J. Am. Ceram. Soc., 64 (1981) 533.   DOI
16 A. G. Evans and E. A. Charles: J. Am. Ceram. Soc., 59 (1976) 371.   DOI
17 A. Krell: Int. J. Refract. Met. Hard Mater., 16 (1998) 331.   DOI
18 A. Krell and P. Blank: J. Am. Ceram. Soc., 78 (1995) 1118.   DOI