DOI QR코드

DOI QR Code

Preparation and Microwave Absorption Properties of the Fe/TiO2/Al2O3 Composites

  • Li, Yun (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology) ;
  • Cheng, Haifeng (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology) ;
  • Wang, Nannan (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology) ;
  • Zhou, Shen (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology) ;
  • Xie, Dongjin (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology) ;
  • Li, Tingting (Science and Technology on Advanced Ceramic Fibers and Composites Key Lab National University of Defense Technology)
  • Received : 2018.09.02
  • Accepted : 2018.09.28
  • Published : 2018.11.30

Abstract

To reduce the imbalance of impedance matching between the magnetic metal nanowires and free space, $Fe/TiO_2$ core/shell nanowire arrays with different diameters were fabricated in the templates of anodic aluminum oxide membranes by electrodeposition. The influences of the microstructure on the microwave absorption properties of the $Fe/TiO_2/Al_2O_3$ composites were studied by the transmission/reflection waveguide method. It was demonstrated experimentally that both the interfacial polarization and the diameter of the $Fe/TiO_2$ core/shell nanowires have critical effects on the microwave absorption properties. We also investigated the angle dependence of the microwave absorption properties. Due to the interfacial polarization and associated relaxation, the $Fe/TiO_2/Al_2O_3$ composites exhibited optimal microwave absorption properties when microwave propagation direction was accordant with the axis of the nanowires. Finally, we managed to obtain an optimal reflection loss of below -10 dB (90% absorption) over 10.2-14.8 GHz, with a thickness of 3.0 mm and the minimum value of -39.4 dB at 11.7 GHz.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National University of Defense Technology

References

  1. B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei and J. P. Sun, J. Magn. Magn. Mater. 320, 1106 (2008). https://doi.org/10.1016/j.jmmm.2007.10.030
  2. J. R. Liu, M. Itoh, M. Terada, T. Horikawa and K. Machida, Appl. Phys. Lett. 91, 093101 (2007). https://doi.org/10.1063/1.2775804
  3. X. Q. Shen, F. Z. Song, X. C. Yang, Z. Wang, M. X. Jing and Y. D. Wang, J. Alloys Compd. 621, 146 (2015). https://doi.org/10.1016/j.jallcom.2014.09.181
  4. J. Y. Shen, Y. T. Yao, Y. J. Liu and J. S. Leng, J. Mater. Chem. C. 4 (2016), pp. 7614-7621. https://doi.org/10.1039/C6TC01912A
  5. B. Zhao, G. Shao, B. B. Fan, W. Y. Zhao and R. Zhang, Phys. Chem. Chem. Phys. 17 (2015), pp. 2531-2539. https://doi.org/10.1039/C4CP05031B
  6. P. J. Liu, V. M. H. Ng, Z. J. Yao, J. T. Zhou, Y. M. Lei, Z. H. Yang, H. L. Lv and L. B. Kong, ACS Appl. Mater. Interf. 9, 16404 (2017). https://doi.org/10.1021/acsami.7b02597
  7. P. J. Liu, Z. J. Yao, J. T. Zhou, Z. H. Yang and L. B. Kong, J. Mater. Chem. C. 4, 9738 (2016). https://doi.org/10.1039/C6TC03518C
  8. P. J. Liu, V. M. H. Ng, Z. J. Yao, J. T. Zhou and L. B. Kong, Mater. Lett. 229, 286 (2018). https://doi.org/10.1016/j.matlet.2018.07.045
  9. X. G. Liu, C. Y. Zhao, Z. X. Li, A. L. Xia, C. G. Jin, H. L. Wei, H. Y. Zhang, H. L. Li, S. H. Zhang and H. M. Long, Nano 12, 1750085 (2017). https://doi.org/10.1142/S1793292017500850
  10. N. K. Sun, B. S. Du, F. Liu, P. Z. Si, M. X. Zhao, X. Y. Zhang and G. M. Shi, J. Alloys Compd. 577, 533 (2013). https://doi.org/10.1016/j.jallcom.2013.06.172
  11. X. Ni, J. Ma, J. G. Li, D. M. Jiao, J. J. Huang and X. D. Zhang, J. Alloys Compd. 468, 386 (2009). https://doi.org/10.1016/j.jallcom.2008.01.011
  12. S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang and Y. W. Du, J. Magn. Magn. Mater. 222, 97 (2000). https://doi.org/10.1016/S0304-8853(00)00541-2
  13. W. Zhu, G. Z. Wang, X. Hong, X. S. Shen, D. P. Li and X. Xie, Electrochim. Acta 55, 480 (2009). https://doi.org/10.1016/j.electacta.2009.08.059
  14. W. C. Tsai, S. J. Wang, J. K. Lin, C. L. Chang and R. M. Ko, Electrochem. Commun. 11, 660 (2009). https://doi.org/10.1016/j.elecom.2009.01.002
  15. D. AlMawlawi, N. Coombs and M. Moskovits, J. Appl. Phys. 70, 4421 (1991). https://doi.org/10.1063/1.349125
  16. R. Inguanta, M. Butera, C. Sunseri and S. Piazza, Appl. Surf. Sci. 253, 5447 (2007). https://doi.org/10.1016/j.apsusc.2006.12.080
  17. S. K. Mohapatra, S. Banerjee and M. Misra, Nanotechnology 19, 315601 (2008). https://doi.org/10.1088/0957-4484/19/31/315601
  18. H. C. Zhang, M. Zhou, Q. Fu, B. Lei, W. Lin, H. S. Guo, M. H. Wu and Y. Lei, Nanotechnology 25, 275603 (2014). https://doi.org/10.1088/0957-4484/25/27/275603
  19. W. Zhu, G. Z. Wang, X. Hong and X. S. Shen, Chin. J. Chem. Phys. 24, 91 (2011). https://doi.org/10.1088/1674-0068/24/01/91-96
  20. Z. X. Ye, H. D. Liu, I. Schultz, W. H. Wu, D. G. Naugle and I. Lyuksyutov, Nanotechnology 19, 325303 (2008). https://doi.org/10.1088/0957-4484/19/32/325303
  21. F. Y. Li, R. M. Metzger and W. D. Doyle, IEEE Trans. Magn. 33, 3715 (1997). https://doi.org/10.1109/20.619548
  22. Q. Zhang, C. F. Li, Y. N. Chen, Z. Han, H. Wang, Z. J. Wang, D. Y. Geng, W. Liu and Z. D. Zhang, Appl. Phys. Lett. 97, 239901 (2010). https://doi.org/10.1063/1.3515276
  23. M. Z. Wu, Z. S. Zhao and H. H. He, J. Funct. Mater. 30, 91 (1999).
  24. Y. Nie, H. H. He, Z. S. Zhao, R. Z. Gong and H. B. Yu, J. Magn. Magn. Mater. 306, 125 (2006). https://doi.org/10.1016/j.jmmm.2006.02.233
  25. X. C. Li, R. Z. Gong, H. H. He, K. L. Yao and P. X. Lu, IEEE Trans. Magn. 44, 4567 (2008). https://doi.org/10.1109/TMAG.2008.915616
  26. X. Wang, R. Z. Gong, X. C. Li, Y. F. He, L. Y. Liu and P. G. Li, J. Mater. Sci. Mater. Electron. 18, 481 (2007). https://doi.org/10.1007/s10854-006-9063-x
  27. M. Han, W. Tang, W. Chen, H. Zhou and L. J. Deng, J. Appl. Phys. 107, 09A958 (2010). https://doi.org/10.1063/1.3367970
  28. Y. B. Feng, T. Qiu and C. Y. Shen, J. Magn. Magn. Mater. 318, 8 (2007). https://doi.org/10.1016/j.jmmm.2007.04.012
  29. Y. B. Feng and T. Qiu, J. Magn. Magn. Mater. 324, 2528 (2012). https://doi.org/10.1016/j.jmmm.2012.03.029
  30. B. S. Zhang, G. Lu, Y. Feng, J. Xiong and H. X. Lu, J. Magn. Magn. Mater. 299, 205 (2006). https://doi.org/10.1016/j.jmmm.2005.04.003
  31. L. Fu, P. B. Macedo and L. Resca, Phys. Rev. B 47, 13818 (1993). https://doi.org/10.1103/PhysRevB.47.13818
  32. X. Wang, R. Z. Gong, P. G. Li, L. Y. Liu and W. M. Cheng, Mater. Sci. Eng. A 466, 178 (2007). https://doi.org/10.1016/j.msea.2007.02.051
  33. J. Y. Dong, R. Ullal, J. Han, S. H. Wei, X. Ouyang, J. Z. Dong and W. Gao, J. Mater. Chem. A 3, 5285 (2015). https://doi.org/10.1039/C4TA05908E
  34. S. J. Yan, L. Zhen, C. Y. Xu, J. T. Jiang and W. Z. Shao, J. Phys. D 43, 245003 (2010). https://doi.org/10.1088/0022-3727/43/24/245003
  35. K. C. Zhang, X. B. Gao, Q. Zhang, T. P. Li, H.Chen and X. F. Chen, J. Alloys Compd. 723, 912 (2017). https://doi.org/10.1016/j.jallcom.2017.06.327
  36. H. L. Lv, Y. H. Guo, G. L. Wu, G. B. Ji, Y. Zhao and Z. C. J. Xu, ACS Appl. Mater. Interf. 9, 5660 (2017). https://doi.org/10.1021/acsami.6b16223
  37. H. L. Lv, H. Q. Zhang, G. B. Ji and Z. C. J. Xu, ACS Appl. Mater. Interf. 8, 6529 (2016). https://doi.org/10.1021/acsami.5b12662
  38. G. Z. Wang, Z. Gao, S. W. Tang, C. Q. Chen, F. F. Duan and S. C. Zhao, ACS Nano 6, 11009 (2012). https://doi.org/10.1021/nn304630h
  39. X. Bai, Y. H. Zhai and Y. Zhang, J. Phys. Chem. C 115, 11673 (2011). https://doi.org/10.1021/jp202475m