• Title/Summary/Keyword: microscopy (electron, scanning)

Search Result 5,016, Processing Time 0.031 seconds

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials (전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구)

  • Kwon, Ohkyung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Characteristics of Auditory Stereocilia in the Apical Turn of the Echolocating Bats by Scanning Electron Microscopy

  • Kim, Jinyong;Jung, Yongwook
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • The auditory system of the Korean greater horseshoe bat (Rhinolophus ferrumequinum korai, RFK) is adapted to its own echolocation signal, which consist of constant frequency (CF) element and frequency modulated (FM) element. In contrast, the Japanese long-fingered bat (Miniopterus schreibersii fuliginosus, MSF) emits FM signals. In the present study, the characteristics of stereocilia in RFK (a CF/FM bat) and MSF (a FM bat) were studied in the apical turn of the cochlea where the lower frequencies are transduced. Stereocilia lengths and numbers were quantitatively measured in RFK by scanning electron microscopy and compared with those of MSF. Each inner hair cells (IHCs) of RFK possessed three rows of stereocilia, whereas MSF possessed five rows of stereocilia. Gradients in stereocilia lengths and numbers of stereocilia of the IHCs of RFK were found to be less pronounced and fewer, respectively, than those of MSF. Each outer hair cells (OHCs) possessed three rows of stereocilia in both species. OHCs stereocilia in RFK that distinguished it from MSF were a shorter length and a greater number of stereocilia. These features suggest that the apical cochleas of RFK are adapted for the processing of higher frequency echolocation calls rather than that of MSF.

Introduction to Cathodoluminescence Spectroscopy Using Scanning Transmission Electron Microscopy (주사 투과 전자현미경을 활용한 음극형광 분석법)

  • Sung-Dae Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.326-331
    • /
    • 2023
  • The utilization of scanning transmission electron microscopy (STEM) in conjunction with cathodoluminescence (CL) has emerged as a valuable tool for the investigation of material optical properties. In recent years, this technique has facilitated significant advancements in the fields of plasmonics and quantum emitters by surpassing prior technical restrictions. The review commences by providing an outline of the diverse STEM-CL operating modes and technical aspects of the instrumentation. The review explains the fundamental physics of light production under electron beam irradiation and the physical basis for interpreting STEM-CL experiments for different types of excitations. Additionally, the review compares STEM-CL to other related techniques such as scanning electron microscope CL, photoluminescence, and electron energy-loss spectroscopy.

Optimal Conditions for Defect Analysis Using Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.164-166
    • /
    • 2016
  • Electron channeling contrast imaging (ECCI) is a powerful analyzing tool for identifying lattice defects like dislocations and twin boundaries. By using diffraction-based scanning electron microscopy technique, it enables microstructure analysis, which is comparable to that obtained by transmission electron microscopy that is mostly used in defect analysis. In this report, the optimal conditions for investigating crystal defects are suggested. We could obtain the best ECCI images when both acceleration voltage and probe current are high (30 kV and 20 nA). Also, shortening the working distance (6 mm) enhances the quality of defect imaging.

Atomically sculptured heart in oxide film using convergent electron beam

  • Gwangyeob Lee;Seung-Hyub Baek;Hye Jung Chang
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.1.1-1.2
    • /
    • 2021
  • We demonstrate a fabrication of an atomically controlled single-crystal heart-shaped nanostructure using a convergent electron beam in a scanning transmission electron microscope. The delicately controlled e-beam enable epitaxial crystallization of perovskite oxide LaAlO3 grown out of the relative conductive interface (i.e. 2 dimensional electron gas) between amorphous LaAlO3/crystalline SrTiO3.

Measurement of Barium Ion Displacement Near Surface in a Barium Titanate Nanoparticle by Scanning Transmission Electron Microscopy

  • Aoki, Mai;Sato, Yukio;Teranishi, Ryo;Kaneko, Kenji
    • Applied Microscopy
    • /
    • v.48 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Barium titanate ($BaTiO_3$) nanoparticle is one of the most promising materials for future multi-layer ceramic capacitor and ferroelectric random access memory. It is well known that electrical property of nanoparticles depends on the atomistic structure. Although surface may possibly have an impact on the atomistic structure, reconstructed structure at the surface has not been widely investigated. In the present study, Ba-ion position near surface in a $BaTiO_3$ nanoparticle has been quantitatively characterized by scanning transmission electron microscopy. It was found that some Ba ions at the surface were greatly displaced in non-uniform directions.

Water Wetting Observation on a Superhydrophobic Hairy Plant Leaf Using Environmental Scanning Electron Microscopy

  • Yoon, Sun Mi;Ko, Tae-Jun;Oh, Kyu Hwan;Nahm, Sahn;Moon, Myoung-Woon
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.201-205
    • /
    • 2016
  • Functional surfaces in nature have been continuously observed because of their ability to adapt to the environment. To this end, methods such as scanning electron microscopy (SEM) have been widely used, and their wetting functions have been characterized via environmental SEM. We investigated the superhydrophobic hairy leaves of Pelargonium tomentosum, i.e., peppermint-scented geranium. Their surface features and wettability were studied at multiple-scales, i.e., macro-, micro-, and sub-micro scales. The surfaces of the investigated leaves showed superhydrophobicity at the macro-, and micro-scales. The wetting or condensing behavior was studied for molecule-size water vapors, which easily adhered to the hairy surface owing to their significantly lower size in comparison to that of the surface.

Some living eukaryotes during and after scanning electron microscopy

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Electron microscopy (EM) is an essential imaging method in biological sciences. Since biological specimens are exposed to radiation and vacuum conditions during EM observations, they die due to chemical bond breakage and desiccation. However, some organisms belonging to the taxa of bacteria, fungi, plants, and animals (including beetles, ticks, and tardigrades) have been reported to survive hostile scanning EM (SEM) conditions since the onset of EM. The surviving organisms were observed (i) without chemical fixation, (ii) after mounting to a precooled cold stage, (iii) using cryo-SEM, or (iv) after coating with a thin polymer layer, respectively. Combined use of these techniques may provide a better condition for preservation and live imaging of multicellular organisms for a long time beyond live-cell EM.

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.4.1-4.11
    • /
    • 2022
  • Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.