Browse > Article
http://dx.doi.org/10.7584/ktappi.2016.48.1.005

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials  

Kwon, Ohkyung (Seoul National University, National Instrumentation Center for Environmental Management, Nanobioimaging Center)
Shin, Soo-Jeong (Department of Wood and Paper Science, Chungbuk National University)
Publication Information
Journal of Korea Technical Association of The Pulp and Paper Industry / v.48, no.1, 2016 , pp. 5-18 More about this Journal
Abstract
Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.
Keywords
Nanocellulose; transmission electron microscopy; scanning electron microscopy; sample preparation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Habibi, Y., Lucia, L. A. and Rojas, O. J., Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews 110(6):3479-3500 (2010).   DOI
2 Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J., Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Review 40:3941-3994 (2011).   DOI
3 Khalil, H.P.S. A., Davoudpour, Y., Islam, Md. N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., Production and modification of nanofibrillated cellulose using various mechanical process: A review, Carbohydrate Polymers 99:649-665 (2014).   DOI
4 Mariano, M., Kissi, N. E. and Dufresne, A.,-Cellulose nanocrystals and related nanocomposites: review of some properties and challenges, Journal of Polymer Science, Part B: Polymer Physics 52(12):791-806 (2014).   DOI
5 De Broglie, L., The reinterpretation of wave mechanics, Foundations of Physics 1(1): 5-15 (1970).   DOI
6 Egerton, R. F., Li, P. and Malac, M., Radiation damage in the TEM and SEM. Micron 35:399-409 (2004).   DOI
7 Krivanek, O. L., Dellby, N., Murfitt, M. F. and Chisholm, M. F., Pennycook, T. J., Suenaga, K., Nicolosi, V., Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110(8):935-945 (2010).   DOI
8 Peng, Y., Gardner, D. J. and Han, Y., Drying cellulose nanofibrils: In search of a suitable method, Cellulose 19:91-102 (2012).   DOI
9 Peng, Y., Han, Y. and Gardner, D. J., Spray-drying cellulose nanofibrils: Effect of drying process parameters on particle morphology and size distribution, Wood and Fiber Science 44(4):1-14 (2012).
10 Beck, S., Bouchard, J. and Berry, R., Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules, 13:1486-1494 (2012).   DOI
11 Voronova, M. I., Zakharov, A. G., Kuznetsov, O. Y. and Surov, O. V., The effect of drying technique of nanocellulose dispersions on properties of dried materials, Materials Letters 68:164-167 (2012).   DOI
12 Quievy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M. and Devaux, J., Influence of homogenization and drying on the thermal stability of microfibrillated cellulose, Polymer Degradation Stability 95(3):306-314 (2010).   DOI
13 Kvien, I., Tanem, B.S. and Oksman, K., Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules 6:3160-3165 (2005).   DOI
14 Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J-L., Heux, L., Dubreuil, F. and Rochas, C., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules 9:57-65 (2008).   DOI
15 Chinga-Carrasco, G., Yu, Y. and Diserud, O., Quantitative electron microscopy of cellulose nanofibril structures from Eucalyptus and Pinus radiate Kraft pulp fibers, Microscopy and Microanalysis 17:1-9 (2011).   DOI
16 Zhao, J., Zhang, W., Zhang, X., Zhang, X., Lu, C. and Deng, Y., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013).   DOI
17 Morais, J.P.S., Rosa, M.D., de Souza, M.D.M., Nascimento, L.D., do Nascimento, D.M. and Cassales, A.R., Extraction and characterization of nanocelluloses from raw cotton linter, Carbohydrate Polymers 91(1): 229-235 (2013).   DOI
18 Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8:2485-2491 (2007).   DOI
19 Qing, Y., Sabo, R., Zhu, J.Y., Agarwal, U., Cal, Z. and Wu, Y., A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydrate Polymers 97(1): 226-234 (2013).   DOI
20 Amiralian, N., Annamalai, P. K., Memmott, P., Taran, E., Schmidt, S. and Martin, D. J., Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances 5(41), 32124-32132 (2015).   DOI
21 Lu, P., and Hsieh, Y.-L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 82(2): 329-336 (2010).   DOI
22 Tonoli, G.H.D., Teixeira, E.M., Correa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-da-Silva, M.A. and Mattoso, L.H.C., Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polymers 89(1): 80-88 (2012).   DOI
23 Zhao, J.Q., Zhang, W., Zhang, X.D., Zhang, X.X., Lu, C.H. and Deng, Y.L., Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization, Carbohydrate Polymers 97(2): 695-702 (2013).   DOI
24 Amin, K.N.M., Annamalai, P.K., Morrow, I.C. and Martin, D., Production of cellulose nanocrystals via a scalable mechanical method, RSC Advances 5(70): 57133-57140 (2015).   DOI
25 Xu, X.Z., Liu, F., Jiang, L., Zhu, J.Y., Haagenson, D. and Wiesenborn, D.P., Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, ACS Applied Materials & Interfaces, 5(8): 2999-3009 (2013).   DOI
26 Ryu, J.H. and Youn, H.J., Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals, J. of KTAPPI 43(4): 67-75 (2011).
27 Zimmermann, T., Bordeanu, N. and Strub, E., Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydrate Polymers 79:1086-1093 (2010).   DOI
28 Kwon, O. EFTEM micrographs took at National Instrumentation Center for Environmetal Management, Seoul National University. Not published