Browse > Article
http://dx.doi.org/10.9729/AM.2018.48.1.27

Measurement of Barium Ion Displacement Near Surface in a Barium Titanate Nanoparticle by Scanning Transmission Electron Microscopy  

Aoki, Mai (Department of Materials Science and Engineering, Kyushu University)
Sato, Yukio (Department of Materials Science and Engineering, Kyushu University)
Teranishi, Ryo (Department of Materials Science and Engineering, Kyushu University)
Kaneko, Kenji (Department of Materials Science and Engineering, Kyushu University)
Publication Information
Applied Microscopy / v.48, no.1, 2018 , pp. 27-32 More about this Journal
Abstract
Barium titanate ($BaTiO_3$) nanoparticle is one of the most promising materials for future multi-layer ceramic capacitor and ferroelectric random access memory. It is well known that electrical property of nanoparticles depends on the atomistic structure. Although surface may possibly have an impact on the atomistic structure, reconstructed structure at the surface has not been widely investigated. In the present study, Ba-ion position near surface in a $BaTiO_3$ nanoparticle has been quantitatively characterized by scanning transmission electron microscopy. It was found that some Ba ions at the surface were greatly displaced in non-uniform directions.
Keywords
Nanoparticle; $BaTiO_3$; Scanning transmission electron microscopy; Surface; Ferroelectrics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jia C L, Mi S B, Urban K, Vreoiu I, Alexe M, and Hesse D (2008) Atomicscale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57.   DOI
2 Jones L, Yang H, Pennycook T J, Marshall M S J, Aert S V, Browning N D, Castell M R, and Nellist P D (2015) Smart Align-a new tool for robust non-rigid registration of scanning microscope data. Adv. Struc. Chem. Imaging 1, 8.   DOI
3 Li Y, Liao Z, Fang F, Wang X, Li L, and Zhu J (2014) Significant increase of Curie temperature in nano-scale $BaTiO_3$. Appl. Phys. Lett. 105, 182901.   DOI
4 Marquardt D W (1963) An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11, 431.   DOI
5 Meyer B and Vanderbilt D (2001) Ab initio study of $BaTiO_3$ and $PbTiO_3$ surfaces in external electric fields. Phys. Rev. B 63, 205426.   DOI
6 Mimura K and Kato K (2014) Enhanced dielectric properties of $BaTiO_3$ nanocube assembled film in metal-insulator-metal capacitor structure. Appl. Phys. Exp. 7, 061501.   DOI
7 Mitchell R H, Chakhmouradian A R, and Woodward P M (2000) Crystal chemistry of perovskite-type compounds in the tausonite-loparite series, $(Sr_{1-2x}Na_xLa_x)TiO_3$. Phys. Chem. Minerals 27, 583.   DOI
8 Pennycook S J and Jesson D E (1990) High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938.   DOI
9 Petkov V, Gateshki M, Niederberger M, and Ren Y (2006) Atomic-scale structure of nanocrystalline $Ba_xSr_{1-x}TiO_3$ (x = 1, 0.5, 0) by X-ray diffraction and the atomic pair distribution function technique. Chem. Mater. 18, 814.   DOI
10 Rose H (1994) Correction of aberrations, a promising means for improving the spatial and energy resolution of energy-filtering electron microscopes. Ultramicroscopy 56, 11.   DOI
11 Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, and Steigerwald M L (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale $BaTiO_3$. J. Am. Chem. Soc. 130, 6955.   DOI
12 Spanier J E, Kolpak A M, and Urban J J (2006) Ferroelectric phase transition in individual single-crystalline $BaTiO_3$ nanowires. Nano Lett. 6, 735.   DOI
13 Tsurumi T (2007) Non-linear piezoelectric and dielectric behaviors in perovskite ferroelectrics. J. Ceram. Soc. Jpn. 115, 17.   DOI
14 Tsurumi T, Sekine T, Kakemoto H, Hoshina T, Nam S M, Yasuno H, and Wada S (2006) Evaluation and statistical analysis of dielectric permittivity of $BaTiO_3$ powders. J. Am. Ceram. Soc. 89, 1337.   DOI
15 Urban J J, Spanier J E, Ouyang L, Yun W S, and Park H (2003) Singlecrystalline barium titanate nanowires. Adv. Mater. 15, 423.   DOI
16 Varghese J, Whatmore R W, and Holmes J D (2013) Ferroelectric nanoparticles, wires and tubes: synthesis, characterization and applications. J. Mater. Chem. C 1, 2618.   DOI
17 Polking M, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, and Ramesh R (2012) Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 11, 703.
18 Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlep€utz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, and Ramesh R (2016) Observation of polar vortices in oxide superlattices. Nature (London) 530, 198.   DOI
19 Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, and Voyles P M (2014) Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155.   DOI
20 Yamamoto T, Niori H, and Moriwake H (2000) Particle-size dependence of crystal structure of $BaTiO_3$ powder. Jpn. J. Appl. Phys. 39, 5683.   DOI
21 Zhao Z, Buscaglia V, Viviani M, Buscaglia M T, Mitoseriu L, Testino A, Nygren M, Johnsson M, and Nanni P (2004) Grain-size effects on the ferroelectric behavior of dense nanocrystalline $BaTiO_3$ ceramics. Phys. Rev. B 70, 024107.   DOI
22 Bansal V, Poddar P, Ahmad A, and Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958.   DOI
23 Akdogan E K and Safari A J (2007) Thermodynamic theory of intrinsic finite size effects in $PbTiO_3$ nanocrystals. II. Dielectric and piezoelectric properties. J. Appl. Phys. 101, 064114.   DOI
24 Arlt G, Hennings D, and De With G (1985) Dielectric properties of finegrained barium titanate ceramics. J. Appl. Phys. 58, 1619.   DOI
25 Bals S, Van Aert S, Van Tendeloo G, and A'vila-Brande D (2006) Statistical estimation of atomic positions from exit wave reconstruction with a precision in the picometer range. Phys. Rev. Lett. 96, 096106.   DOI
26 Borisevich A Y, Eliseev E A, Morozovska A N, Cheng C J, Lin J Y, Chu Y H, Kan D, Takeuchi I, Nagarajan V, and Kalinin S V (2012) Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775.   DOI
27 Frey M H and Payne D A (1996) Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158.   DOI
28 Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, and Eom C B (2004) Enhancement of ferroelectricity in strained $BaTiO_3$ thin films. Science 306, 1005.   DOI
29 Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, and Thompson C (2004) Ferroelectricity in ultrahin perovskite films. Science 304, 1650.   DOI
30 Frenkel A I, Frey M H, and Payne D A (1999) XAFS analysis of particle size effect on local structure in $BaTiO_3$. J. Synchrotron. Radiat. 6, 515.   DOI
31 Ghosez P and Rabe K M (2000) Microscopic model of ferroelectricity in stress-free $PbTiO_3$ ultrathin films. Appl. Phys. Lett. 76, 2767.   DOI
32 Hoshina T, Kakemoto H, Tsurumi T, Wada S, and Yashima M (2006) Size and temperature induced phase transition behaviors of barium titanate nanoparticles. J. Appl. Phys. 99, 054311.   DOI
33 Hoshina T, Wada S, Kuroiwa Y, and Tsurumi T (2008) Composite structure and size effect of barium titanate nanoparticles. Appl. Phys. Lett. 93, 192914.   DOI
34 Huan Y, Wang X, Fang J, and Li L (2014) Grain size effect on piezoelectric and ferroelectric properties of $BaTiO_3$ ceramics. J. Euro. Ceram. Soc. 34, 1445.   DOI
35 Imanaka Y, Amada H, Kumasaka F, Takahashi N, Yamasaki T, Ohfuchi M, and Kaneta C (2013) Nanoparticulated dense and stress-free ceramic thick film for material integration. Adv. Eng. Mater. 15, 1129.   DOI