• Title/Summary/Keyword: micromagnetic simulation

Search Result 30, Processing Time 0.038 seconds

Magnetic tunnel junctions with thin free layer

  • 임우창;박병국;배지영;이택동
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.68-69
    • /
    • 2002
  • Magnetic tunnel junctions은 최근 자기저항용 재료나 MRAM용 소자로 사용하기 위한 연구가 활발하게 진행되고 있다. Magnetic tunnel junction을 저자계, 저전력용 소자로 사용되기 위해서는, 작은 switching field 값과 uniform한 switching field 분포를 가져야 한다. Micromagnetic simulation을 통하여 free layer의 두께와 포화 자화 값이 감소함에 따라서 switching field가 감소함을 알 수 있었다. 본 연구에서는 얇은 free layer를 사용하여 magnetic tunnel junction을 제조하고, 얇은 free layer가 자기저항에 미치는 영향에 대하여 알아보았다. (중략)

  • PDF

Spin-polarized Current Switching of Co/Cu/Py Pac-man type II Spin-valve

  • Lyle, Andrew;Hong, Yang-Ki;Choi, Byoung-Chul;Abo, Gavin;Bae, Seok;Jalli, Jeevan;Lee, Jae-Jin;Park, Mun-Hyoun;Syslo, Ryan
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.103-107
    • /
    • 2010
  • We investigated spin-polarized current switching of Pac-man type II (PM-II) nanoelements in Pac-man shaped nanoscale spin-valves (Co/Cu/Py) using micromagnetic simulations. The effects of slot angle and antiferromagnetic (AFM) layer were simulated to obtain optimum switching in less than 2 ns. At a critical slot angle of $105^{\circ}$, the lowest current density for anti-parallel to parallel (AP-P) switching was observed due to no vortex or antivortex formation during the magnetic reversal process. All other slot angles for AP-P formed a vortex or antivortex during the magnetization reversal process. Additionally, a vortex or anti-vortex formed for all slot angles for parallel to anti-parallel (P-AP) switching. The addition of an AFM layer caused the current density to decrease significantly for AP-P and P-AP at slot angles less than $90^{\circ}$. However, at slot angles greater than $90^{\circ}$, the current density tended to decrease by less amounts or actually increased slightly as shape anisotropy became more dominant. This allowed ultra-fast switching with 5.05 and $5.65{\times}10^8\;A/cm^2$ current densities for AP-P and P-AP, respectively, at a slot angle of $105^{\circ}$.

Effect of cross-sectional vortex formation on magnetization reversal in rectangular shaped Permalloy nanowires

  • Khan, Imran;Hong, Jisang;Hwang, Chanyong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.115-115
    • /
    • 2013
  • In order to pinpoint the different factors responsible for magnetization reversal, we performed simulation using OOMMF micromagnetic package for rectangular shaped permalloy element having length of $1{\mu}m$, width 50-100 nm and thickness 15-80 nm with length to width ratio L/W>4. Interestingly an increase in coercivity with thickness is found for every width below a critical thickness. With increasing width and thickness, the distinct behavior of coercivity, hysteresis loops and reversal mechanism are presented. Vortex end domains are observed during the magnetization reversal beyond particular thickness, where the three dimension reversal mechanism is expected to begin, causing a sudden increase in coercivity.

  • PDF

Micromagnetic Computer Simulation of Ultra-high density Recording with the Use of a Planar-type Head

  • S.H. Lim;Kim, H.J.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2001
  • A computer simulation, utilizing the Landau-Lifshitz-Gilbert equation, of ultra-high- density recording on continuous longitudinal media is carried out. The two important features of this work are the use of a planar-type head, which enables a high write field of 14183 Oe ts be generated at the center of the recording medium, and the media with very high coercivities up to 13010 Oe. From a systematic investigation, it is found that the optimum write field is higher than the medium coercivity by only 3400 Oe over a wide coercivity range. This new finding allows one to write an a medium with a very high coercivity by using a planar-type head. It is demonstrated that a reasonably good bit pattern with a bit density of 605 kfci is generated on the medium with a coercivity of l1720 Oe, and, combined with a high track pitch density of 100 ktpi, a recording density of 60 Gb/in$^2$can be obtained in a single layer medium. With an improved write- head designs even a higher recording density of 75 Gb/in$^2$may be possible since comparison of the results for the bit pattern from the present head profile and the ideal Lindholm profile indicates an increase in the track pitch density of about 27%. Even at this density, the thermal stability parameter (KV/kT) at room temperature is high enough (60) to provide ample room for thermal stability.

  • PDF

Computer Simulation of Enhancement of Coerciviy in Nd-Fe-B/(Nd,Dy)-Fe-B Composite Magnets

  • Kawasaki, Kohei;Yanai, Takeshi;Nakano, Masaki;Fukunaga, Hirotoshi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • The coercivity $H_c$ of $Nd_2Fe_{14}B$ magnets and $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets were calculated by computer simulation based on the micromagnetic theory under assumptions that $Nd_2Fe_{14}B$ and $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains have magnetically deteriorated layers on their surfaces and diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones through the contacting boundaries recovers the magnetic anisotropy of the deteriorated layers of $Nd_2Fe_{14}B$ grains. $H_c$ of $Nd_2Fe_{14}B/(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ composite magnets increased by the diffusion of Dy from $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains to $Nd_2Fe_{14}B$ ones and the resultant recovery of the anisotropy field of deteriorated layers of $Nd_2Fe_{14}B$ grains. The $H_c$ vs fraction of $(Nd_{0.7}Dy_{0.3})_2Fe_{14}B$ grains curve were convex for the magnets with the degree of alignment between 0.94 and 0.99, which suggests that the above composite magnets have larger $H_c$ values than the alloy-magnets with the same Dy content, and that we can save the consumption of Dy by using these composite magnets.

Three-Dimensional Dynamics of Magnetic Vortex Core in a Nanodisk (나노디스크에서의 자기 소용돌이 핵의 3차원 동역학 연구)

  • Moon, Jung-Hwan;Lee, Kyung-Jin;Kim, Dong-Hyun;Piao, Hong-Guang
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.195-199
    • /
    • 2012
  • Using micromagnetic simulation, we investigated the effect of thickness of a nanodisk on a resonance frequency of vortex gyration. We observed that the resonance frequency increases with increasing thickness in both cases of 2-dimensional (2D) and 3-dimensional (3D) calculation. However, there is a difference in the increasing rate of resonance frequency between 2D and 3D modeling owing to dynamically developed inhomogeneous magnetic texture along the thickness direction of disk in 3D modeling.

Shape Dependent Coercivity Simulation of a Spherical Barium Ferrite (S-BaFe) Particle with Uniaxial Anisotropy

  • Abo, Gavin S.;Hong, Yang-Ki;Jalli, Jeevan;Lee, Jae-Jin;Park, Ji-Hoon;Bae, Seok;Kim, Seong-Gon;Choi, Byoung-Chul;Tanaka, Terumitsu
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • The coercivity of a single 27 nm-spherical barium ferrite (S-BaFe) particle was simulated using three models: 1) Gibbs free energy (GFE), 2) Landau-Lifshitz-Gilbert (LLG), and 3) Stoner-Wohlfarth (S-W). Spherically and hexagonally shaped particles were used in the GFE and LLG simulations to investigate coercivity with the different shape anisotropies. The effect of shape was not included in the S-W model. It was found that the models using a spherical shape resulted in a coercivity higher than the models using the hexagonal shape with both shapes having the same diameter. The coercivity estimated with the S-W model was approximately the same as that for the spherical-shape models, which indicates that spherical shape has no significant effect on the particle's coercivity at nanoscale.

Effect of α-Fe Content on the Magnetic Properties of MnBi/α-Fe Nanocomposite Permanent Magnets by Micro-magnetic Calculation

  • Li, Y.Q.;Yue, M.;Zuo, J.H.;Zhang, D.T.;Liu, W.Q.;Zhang, J.X.;Guo, Z.H.;Li, W.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.245-249
    • /
    • 2013
  • A finite element model was built for MnBi/${\alpha}$-Fe nanocomposite permanent magnets, and the demagnetization curves of the magnets were simulated by micro-magnetic calculation. The microstructure of the cubic model is composed of 64 irregular grains with an average grain size of 20 nm. With the volume fraction of soft magnetic phase (t vol. %) ranged from 5 to 20 vol. %, both isotropic and anisotropic nanocomposite magnets show typical single-phase permanent magnets behavior in their demagnetization curves, illustrating good intergranular exchange coupling effect between soft and hard magnetic phases. With the increase of volume fraction of soft magnetic phase in both isotropic and anisotropic magnets, the coercive force of the magnets decreases monotonically, while the remanence rises at first to a peak value, then decreases. The optimal values of maximum energy products of isotropic and anisotropic magnets are 84 and $200kJ/m^3$, respectively. Our simulation shows that the MnBi/${\alpha}$-Fe nanocomposite permanent magnets own excellent magnetic properties and therefore good potential for practical applications.

Switching Characteristics of Magnetic Tunnel Junction with Amorphous CoFeSiB Free Layer (비정질 CoFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.276-278
    • /
    • 2006
  • The switching characteristics of magnetic tunnel junctions (MTJs) comprising amorphous ferromagnetic CoFeSiB free layer have been investigated. CoFeSiB was used for the free layer to enhance the switching characteristics. The typical junction structure was $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nm)$. CoFeSiB has low saturation magnetization ($M_{s}$) of $560\;emu/cm^{3}$ and high anisotropy constant ($K_{u}$) of $2800\;erg/cm^{3}$. These properties caused low coercivity ($H_{c}$) and high sensitivity in MTJs, and it also confirmed in submicrometer-sized elements by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. By increasing CoFeSiB free layer thickness, the switching characteristics became worse due to increase of the demagnetization field.

Magnetoresistance Effects of Magnetic Tunnel Junctions with Amorphous CoFeSiB Single and Synthetic Antiferromagnet Free Layers (비정질 CoFeSiB 단일 및 합성형 반강자성 자유층을 갖는 자기터널접합의 자기저항 효과)

  • Hwang, J.Y.;Kim, S.S.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.315-319
    • /
    • 2005
  • To obtain low switching field ($H_{SW}$) we introduced amorphous ferromagnetic $Co_{70.5}Fe_{4,5}Si_{15}B_{10}$ single and synthetic antiferromagnet (SAF) free layers in magnetic tunnel junctions (MTJs). The switching characteristics for MTJs with structures $Si/SiO_2/Ta$ 45/Ru 9.5/IrMn 10/CoFe 7/AlOx/CoFeSiB 7 or CoFeSiB (t)/Ru 1.0/CoFeSiB (7-t)/Ru 60 (in nm) were investigated and compared to MTJs with $Co_{75}Fe_{25}$ and $Ni_{80}Fe_{20}$ free layers. CoFeSiB showed a lower saturation magnetization of $560 emu/cm^3$ and a higher anisotropy constant of $2800\;erg/cm^3$ than CoFe and NiFe, respectively. An exchange coupling energy ($J_{ex}$) of $-0.003erg/cm^2$ was observed by inserting a 1.0 nm Ru layer in between CoFeSiB layers. In the CoFeSiB single and SAF free layer MTJs, it was frond that the size dependence of the $H_{SW}$ originated from the lower $J_{ex}$ experimentally and by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. The CoFeSiB SAF structures showed lower $H_{SW}$ than that of NiFe, CoFe and CoFeSiB single structures. The CoFeSiB SAF structures were proved to be beneficial far the switching characteristics such as reducing the coercivity and increasing the sensitivity in micrometer to submicrometer-sized elements.