Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.1.001

Shape Dependent Coercivity Simulation of a Spherical Barium Ferrite (S-BaFe) Particle with Uniaxial Anisotropy  

Abo, Gavin S. (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Hong, Yang-Ki (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Jalli, Jeevan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Lee, Jae-Jin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Park, Ji-Hoon (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Bae, Seok (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Kim, Seong-Gon (Department of Physics and Astronomy, Mississippi State University)
Choi, Byoung-Chul (Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia)
Tanaka, Terumitsu (Department of Information Science and Electrical Engineering, Kyushu University)
Publication Information
Abstract
The coercivity of a single 27 nm-spherical barium ferrite (S-BaFe) particle was simulated using three models: 1) Gibbs free energy (GFE), 2) Landau-Lifshitz-Gilbert (LLG), and 3) Stoner-Wohlfarth (S-W). Spherically and hexagonally shaped particles were used in the GFE and LLG simulations to investigate coercivity with the different shape anisotropies. The effect of shape was not included in the S-W model. It was found that the models using a spherical shape resulted in a coercivity higher than the models using the hexagonal shape with both shapes having the same diameter. The coercivity estimated with the S-W model was approximately the same as that for the spherical-shape models, which indicates that spherical shape has no significant effect on the particle's coercivity at nanoscale.
Keywords
spherical barium ferrite; micromagnetic simulation; shape anisotropy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. V. Golubenko, A. S. Kamzin, L. P. Ol'khovik, M. M. Khvorov, Z. I. Sizova, and V. P. Shabatin, Phys. Solid State 44, 1698 (2002).   DOI
2 O. Kubo and E. Ogawa, J. Magn. Magn. Mater. 134, 376 (1994).   DOI   ScienceOn
3 H. C. Fang, C. K. Ong, X. Y. Zhang, Y. Li, X. Z. Wang, and Z. Yang, J. Magn. Magn. Mater. 191, 277 (1999).   DOI   ScienceOn
4 D. E. Speliotis, IEEE Trans. Magn. 22, 707 (1986).   DOI
5 J. Wang, F. Zhao, W. Wu, and G. M. Zhao, J. Appl. Phys. 110, 096107 (2011).   DOI   ScienceOn
6 Y. Wang and J. G. Zhu, IEEE Trans. Magn. 45, 3737 (2009).   DOI   ScienceOn
7 B. Biskeborn and P. O. Jubert, IEEE Trans. Magn. 46, 880 (2010).   DOI   ScienceOn
8 R. Skomski, J. P. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6334 (2000).   DOI   ScienceOn
9 J. Jalli, Y. K. Hong, J. J. Lee, G. S. Abo, J. H. Park, A. M. Lane, S. G. Kim, and S. C. Erwin, IEEE Magn. Lett. 1, 4500204 (2010).   DOI   ScienceOn
10 J. Jalli, Y. K. Hong, S. Bae, G. S. Abo, J. J. Lee, J. C. Sur, S. H. Gee, S. G. Kim, S. C. Erwin, and A. Moitra, IEEE Trans. Magn. 45, 3590 (2009).   DOI   ScienceOn
11 T. Schrefl, G. Hrkac, D. Suess, W. Scholz, and J. Fidler, J. Appl. Phys. 93, 7041 (2003).   DOI   ScienceOn
12 R. P. Boardman, J. Zimmermann, H. Fangohr, A. A. Zhukov, and P. A. J. de Groot, J. Appl. Phys. 97, 10E305 (2005).   DOI
13 D. R. Fredkin and T. R. Koehler, IEEE Trans. Magn. 25, 3473 (1989).
14 R. H. Victora, J. Appl. Phys. 63, 3423 (1988).   DOI
15 Y. Uesaka, Y. Nakatani, and N. Hayashi, Jpn. J. Appl. Phys. 30, 2489 (1991).   DOI
16 Y. Nakatani, N. Hayashi, and Y. Uesaka, Jpn. J. Appl. Phys. 30, 2503 (1991).   DOI
17 Y. Uesaka, Y. Nakatani, and N. Hayashi, Jpn. J. Appl. Phys. 34, 6056 (1995).
18 W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. Tsiantos, Comp. Mat. Sci. 28, 366 (2003).   DOI   ScienceOn
19 N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009).   DOI   ScienceOn
20 J. Jalli, Y. Hong, S. Bae, J. Lee, G. S. Abo, S. Gee, J. C. Sur, and S. G. Kim, Conversion of nano-sized spherical magnetite (S-Mag) to spherical barium ferrite (S-BaFe) nanoparticles for high density particulate recording media, Paper DP-08, presented at Intermag 2009, Sacramento, CA, May 2009.
21 J. Schoberl, Netgen, http://www.hpfem.jku.at/netgen
22 S. H. Gee, Y. K. Hong, F. J. Jeffers, M. H. Park, J. C. Sur, C. Weatherspoon, and I. T. Nam, IEEE Trans. Magn. 41, 4353 (2005).   DOI   ScienceOn
23 Y. K. Hong, F. J. Jeffers, and M. H. Park, IEEE Trans. Magn. 36, 3863 (2000).   DOI   ScienceOn
24 Y. K. Hong and H. S. Jung, J. Appl. Phys. 85, 5549 (1999).   DOI   ScienceOn
25 H. M. Lee, S. Y. Bae, J. H. Yu, and Y. J. Kim, J. Am. Ceram. Soc. 91, 2856 (2008).   DOI   ScienceOn
26 G. Cherubini, R. D. Cideciyan, L. Dellmann, E. Eleftheriou, W. Haeberle, J. Jelitto, V. Kartik, M. A. Lantz, S. Olcer, A. Pantazi, H. E. Rothuizen, D. Berman, W. Imaino, P. O. Jubert, G. McClelland, P. V. Koeppe, K. Tsuruta, T. Harasawa, Y. Murata, A. Musha, H. Noguchi, H. Ohtsu, O. Shimizu, and R. Suzuki, IEEE Trans. Magn. 47, 137 (2011).   DOI   ScienceOn
27 T. Schrefl, J. Fidler, and H. Kronmuller, J. Magn. Magn. Mater. 138, 15 (1994).   DOI   ScienceOn
28 W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, R. Dittrich, and V. Tsiantos, J. Magn. Magn. Mater. 272, 1524 (2004).   DOI   ScienceOn