DOI QR코드

DOI QR Code

Shape Dependent Coercivity Simulation of a Spherical Barium Ferrite (S-BaFe) Particle with Uniaxial Anisotropy

  • Abo, Gavin S. (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Hong, Yang-Ki (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Jalli, Jeevan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Lee, Jae-Jin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Park, Ji-Hoon (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Bae, Seok (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Kim, Seong-Gon (Department of Physics and Astronomy, Mississippi State University) ;
  • Choi, Byoung-Chul (Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia) ;
  • Tanaka, Terumitsu (Department of Information Science and Electrical Engineering, Kyushu University)
  • Received : 2011.07.09
  • Accepted : 2012.02.29
  • Published : 2012.03.31

Abstract

The coercivity of a single 27 nm-spherical barium ferrite (S-BaFe) particle was simulated using three models: 1) Gibbs free energy (GFE), 2) Landau-Lifshitz-Gilbert (LLG), and 3) Stoner-Wohlfarth (S-W). Spherically and hexagonally shaped particles were used in the GFE and LLG simulations to investigate coercivity with the different shape anisotropies. The effect of shape was not included in the S-W model. It was found that the models using a spherical shape resulted in a coercivity higher than the models using the hexagonal shape with both shapes having the same diameter. The coercivity estimated with the S-W model was approximately the same as that for the spherical-shape models, which indicates that spherical shape has no significant effect on the particle's coercivity at nanoscale.

Keywords

References

  1. J. Jalli, Y. K. Hong, J. J. Lee, G. S. Abo, J. H. Park, A. M. Lane, S. G. Kim, and S. C. Erwin, IEEE Magn. Lett. 1, 4500204 (2010). https://doi.org/10.1109/LMAG.2010.2087315
  2. J. Jalli, Y. K. Hong, S. Bae, G. S. Abo, J. J. Lee, J. C. Sur, S. H. Gee, S. G. Kim, S. C. Erwin, and A. Moitra, IEEE Trans. Magn. 45, 3590 (2009). https://doi.org/10.1109/TMAG.2009.2022496
  3. S. H. Gee, Y. K. Hong, F. J. Jeffers, M. H. Park, J. C. Sur, C. Weatherspoon, and I. T. Nam, IEEE Trans. Magn. 41, 4353 (2005). https://doi.org/10.1109/TMAG.2005.855248
  4. Y. K. Hong, F. J. Jeffers, and M. H. Park, IEEE Trans. Magn. 36, 3863 (2000). https://doi.org/10.1109/20.908404
  5. Y. K. Hong and H. S. Jung, J. Appl. Phys. 85, 5549 (1999). https://doi.org/10.1063/1.369891
  6. H. M. Lee, S. Y. Bae, J. H. Yu, and Y. J. Kim, J. Am. Ceram. Soc. 91, 2856 (2008). https://doi.org/10.1111/j.1551-2916.2008.02575.x
  7. G. Cherubini, R. D. Cideciyan, L. Dellmann, E. Eleftheriou, W. Haeberle, J. Jelitto, V. Kartik, M. A. Lantz, S. Olcer, A. Pantazi, H. E. Rothuizen, D. Berman, W. Imaino, P. O. Jubert, G. McClelland, P. V. Koeppe, K. Tsuruta, T. Harasawa, Y. Murata, A. Musha, H. Noguchi, H. Ohtsu, O. Shimizu, and R. Suzuki, IEEE Trans. Magn. 47, 137 (2011). https://doi.org/10.1109/TMAG.2010.2076797
  8. T. Schrefl, J. Fidler, and H. Kronmuller, J. Magn. Magn. Mater. 138, 15 (1994). https://doi.org/10.1016/0304-8853(94)90395-6
  9. W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, R. Dittrich, and V. Tsiantos, J. Magn. Magn. Mater. 272, 1524 (2004). https://doi.org/10.1016/j.jmmm.2003.12.374
  10. T. Schrefl, G. Hrkac, D. Suess, W. Scholz, and J. Fidler, J. Appl. Phys. 93, 7041 (2003). https://doi.org/10.1063/1.1557398
  11. R. P. Boardman, J. Zimmermann, H. Fangohr, A. A. Zhukov, and P. A. J. de Groot, J. Appl. Phys. 97, 10E305 (2005). https://doi.org/10.1063/1.1850073
  12. D. R. Fredkin and T. R. Koehler, IEEE Trans. Magn. 25, 3473 (1989).
  13. R. H. Victora, J. Appl. Phys. 63, 3423 (1988). https://doi.org/10.1063/1.340755
  14. Y. Uesaka, Y. Nakatani, and N. Hayashi, Jpn. J. Appl. Phys. 30, 2489 (1991). https://doi.org/10.1143/JJAP.30.2489
  15. Y. Nakatani, N. Hayashi, and Y. Uesaka, Jpn. J. Appl. Phys. 30, 2503 (1991). https://doi.org/10.1143/JJAP.30.2503
  16. Y. Uesaka, Y. Nakatani, and N. Hayashi, Jpn. J. Appl. Phys. 34, 6056 (1995).
  17. W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and V. Tsiantos, Comp. Mat. Sci. 28, 366 (2003). https://doi.org/10.1016/S0927-0256(03)00119-8
  18. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009). https://doi.org/10.1063/1.3173280
  19. J. Jalli, Y. Hong, S. Bae, J. Lee, G. S. Abo, S. Gee, J. C. Sur, and S. G. Kim, Conversion of nano-sized spherical magnetite (S-Mag) to spherical barium ferrite (S-BaFe) nanoparticles for high density particulate recording media, Paper DP-08, presented at Intermag 2009, Sacramento, CA, May 2009.
  20. J. Schoberl, Netgen, http://www.hpfem.jku.at/netgen
  21. O. Kubo and E. Ogawa, J. Magn. Magn. Mater. 134, 376 (1994). https://doi.org/10.1016/0304-8853(94)00147-2
  22. H. C. Fang, C. K. Ong, X. Y. Zhang, Y. Li, X. Z. Wang, and Z. Yang, J. Magn. Magn. Mater. 191, 277 (1999). https://doi.org/10.1016/S0304-8853(98)00381-3
  23. D. E. Speliotis, IEEE Trans. Magn. 22, 707 (1986). https://doi.org/10.1109/TMAG.1986.1064597
  24. J. Wang, F. Zhao, W. Wu, and G. M. Zhao, J. Appl. Phys. 110, 096107 (2011). https://doi.org/10.1063/1.3657851
  25. Y. Wang and J. G. Zhu, IEEE Trans. Magn. 45, 3737 (2009). https://doi.org/10.1109/TMAG.2009.2022279
  26. B. Biskeborn and P. O. Jubert, IEEE Trans. Magn. 46, 880 (2010). https://doi.org/10.1109/TMAG.2009.2034370
  27. R. Skomski, J. P. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6334 (2000). https://doi.org/10.1063/1.372697
  28. Z. V. Golubenko, A. S. Kamzin, L. P. Ol'khovik, M. M. Khvorov, Z. I. Sizova, and V. P. Shabatin, Phys. Solid State 44, 1698 (2002). https://doi.org/10.1134/1.1507250

Cited by

  1. Coercivity of SrFe12O19 Hexaferrite Platelets Near Single Domain Size vol.6, pp.1949-3088, 2015, https://doi.org/10.1109/LMAG.2015.2460215
  2. Micromagnetic Simulation on Ground State Domain Structures of Barium Hexaferrite (BaFe12O19) vol.896, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.896.414