Browse > Article
http://dx.doi.org/10.4283/JMAG.2010.15.3.103

Spin-polarized Current Switching of Co/Cu/Py Pac-man type II Spin-valve  

Lyle, Andrew (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Hong, Yang-Ki (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Choi, Byoung-Chul (Department of Physics and Astronomy, University of Victoria)
Abo, Gavin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Bae, Seok (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Jalli, Jeevan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Lee, Jae-Jin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Park, Mun-Hyoun (Hitachi Global Storage Technologies)
Syslo, Ryan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
Publication Information
Abstract
We investigated spin-polarized current switching of Pac-man type II (PM-II) nanoelements in Pac-man shaped nanoscale spin-valves (Co/Cu/Py) using micromagnetic simulations. The effects of slot angle and antiferromagnetic (AFM) layer were simulated to obtain optimum switching in less than 2 ns. At a critical slot angle of $105^{\circ}$, the lowest current density for anti-parallel to parallel (AP-P) switching was observed due to no vortex or antivortex formation during the magnetic reversal process. All other slot angles for AP-P formed a vortex or antivortex during the magnetization reversal process. Additionally, a vortex or anti-vortex formed for all slot angles for parallel to anti-parallel (P-AP) switching. The addition of an AFM layer caused the current density to decrease significantly for AP-P and P-AP at slot angles less than $90^{\circ}$. However, at slot angles greater than $90^{\circ}$, the current density tended to decrease by less amounts or actually increased slightly as shape anisotropy became more dominant. This allowed ultra-fast switching with 5.05 and $5.65{\times}10^8\;A/cm^2$ current densities for AP-P and P-AP, respectively, at a slot angle of $105^{\circ}$.
Keywords
MRAM; micromagnetic simulation; pac-man; spin-polarized current;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 A. Lyle, Y. K. Hong, B. C. Choi, G. S. Abo, M. H. Park, S. H. Gee, J. Jalli, S. Bae, and G. W. Donohoe, IEEE Trans. Magn. 45, 2367 (2009).   DOI   ScienceOn
2 M. R. Scheinfein, LLG Micromagnetic $Simulator^{TM}$
3 J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).   DOI   ScienceOn
4 L. Wang, J. H. Giusti, and J. Fernando-de-Castro, J. Appl. Phys. 89, 7006 (2001).   DOI   ScienceOn
5 Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, Appl. Phys. Lett. 91, 112501 (2007).   DOI   ScienceOn
6 R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, arXiv:cond-mat/0611668v2, (November 2006).
7 S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).   DOI   ScienceOn
8 C. T. Yen, W. C. Chen, D. Y. Wang, Y. J. Lee, C. T. Shen, S. Y. Yang, C. H. Tsai, C. C. Hung, K. H. Shen, M. J. Tsai, and M. J. Kao, Appl. Phys. Lett. 93, 092504 (2008).   DOI   ScienceOn
9 Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, and K. Inomata, Nature 3, 361 (2004).   DOI   ScienceOn
10 J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and W. L. Song, Appl. Phys. Lett. 86, 142504 (2005).   DOI   ScienceOn
11 N. C. Emley, F. J. Albert, E. M. Ryan, I. N. Krivorotov, D. C. Ralph, J. M. Daughton, and A. Jander, Appl. Phys. Lett. 84, 4257 (2004).   DOI   ScienceOn
12 P. M. Braganca, I. N. Krivorotov, O. Ozaty, A. G. F. Garcia, N. C. Emley, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 87, 112507 (2005).   DOI   ScienceOn
13 J. Janesky N. D. Rizzo, L. Savtchenko, B. Engel, J. M. Slaughter, and S. Tehrani, IEEE Trans. Magn. 37, 2052 (2001).   DOI   ScienceOn
14 S. Tehrani J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, Proc. IEEE 91, 703 (2003).   DOI   ScienceOn
15 B. R. Pujada, J. Svendsen, K. O. Chipeniuk, B. C. Choi, M. H. Park, Y. K. Hong, S. H. Gee, and D. W. Erickson, J. Appl. Phys. 96, 4362 (2004).   DOI   ScienceOn
16 H. Hu, H. Wang, M. R. McCartney, and D. J. Smith, J. Magn. Magn. Mater. 290, 234 (2005).   DOI   ScienceOn
17 M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, and B. C. Choi, Appl. Phys. Lett. 83, 329 (2003).   DOI   ScienceOn
18 M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, T. Tanaka, and B. C. Choi, J. Appl. Phys. 95, 7019 (2004).   DOI   ScienceOn
19 H. Han, Y. K. Hong, M. H. Park, B. C. Choi, S. H. Gee, J. F. Jabal, G. Abo, A. Lyle, B. Wong, and G. W. Donohoe, IEEE Trans. Magn. 41, 4341, (2005).   DOI   ScienceOn
20 B. C. Choi, J. Rudge, E. Girgis, J. Kolthammer, Y. K. Hong, and A. Lyle, Appl. Phys. Lett. 91, 22501 (2007).   DOI   ScienceOn
21 H. Meng and J. P. Wang, Appl. Phys. Lett. 89, 152509 (2006).   DOI   ScienceOn
22 X. Yao, H. Meng, Y. Zhang, and J. P. Wang, J. Appl. Phys. 103, 07A717 (2008).   DOI
23 G. Finnocchoi, I. N. Krivorotov, L. Torres, R. A. Buhrman, D. C. Ralp, and B. Azzerboni, Phys. Rev. B 76, 174408 (2007).   DOI   ScienceOn