Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.3.245

Effect of α-Fe Content on the Magnetic Properties of MnBi/α-Fe Nanocomposite Permanent Magnets by Micro-magnetic Calculation  

Li, Y.Q. (College of Materials Science and Engineering, Beijing University of Technology)
Yue, M. (College of Materials Science and Engineering, Beijing University of Technology)
Zuo, J.H. (College of Materials Science and Engineering, Beijing University of Technology)
Zhang, D.T. (College of Materials Science and Engineering, Beijing University of Technology)
Liu, W.Q. (College of Materials Science and Engineering, Beijing University of Technology)
Zhang, J.X. (College of Materials Science and Engineering, Beijing University of Technology)
Guo, Z.H. (Division of Functional Materials, Central Iron and Steel Research Institute)
Li, W. (Division of Functional Materials, Central Iron and Steel Research Institute)
Publication Information
Abstract
A finite element model was built for MnBi/${\alpha}$-Fe nanocomposite permanent magnets, and the demagnetization curves of the magnets were simulated by micro-magnetic calculation. The microstructure of the cubic model is composed of 64 irregular grains with an average grain size of 20 nm. With the volume fraction of soft magnetic phase (t vol. %) ranged from 5 to 20 vol. %, both isotropic and anisotropic nanocomposite magnets show typical single-phase permanent magnets behavior in their demagnetization curves, illustrating good intergranular exchange coupling effect between soft and hard magnetic phases. With the increase of volume fraction of soft magnetic phase in both isotropic and anisotropic magnets, the coercive force of the magnets decreases monotonically, while the remanence rises at first to a peak value, then decreases. The optimal values of maximum energy products of isotropic and anisotropic magnets are 84 and $200kJ/m^3$, respectively. Our simulation shows that the MnBi/${\alpha}$-Fe nanocomposite permanent magnets own excellent magnetic properties and therefore good potential for practical applications.
Keywords
MnBi/${\alpha}$-Fe nanocomposite permanent magnets; micromagnetic simulation coercive force; remanence; maximum energy products;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Schrefl, R. Fischer, J. Fidler, and H. Kronmuller, J. Appl. Phys. 76, 7053 (1994).   DOI   ScienceOn
2 R. Skomski and J. M. D. Coey, Physical Review B 48, 15812 (1993).   DOI   ScienceOn
3 Y. Q. Li, M. Yue J. H. Zuo, D. T. Zhang, W. Q. Liu, J. X. Zhang, Z. H. Guo, and W. Li, IEEE Trans. Magn. 49, 3391 (2013).   DOI   ScienceOn
4 H. W. Zhang, R. C. Bing, S. Y. Zhang, and B. G. Shen, Acta Phys. Sin. 53, 4347 (2004).
5 H. Kronmukller, R. Fischer, M. Bachmann, and T. Leineweber, J. Magn. Magn. Mater. 203, 12 (1999).   DOI   ScienceOn
6 S. L. He, H. W. Zhang, C. B. Rong, et al., Acta Phys. Sin. 54, 3408 (2005).
7 G. P. Zhao, L. Chen, C. W. Huang, and Y. P. Feng, J. Magn. Magn. Mater. 321, 2322 (2009).   DOI   ScienceOn
8 G. P. Zhao, M. G. Zhao, H. S. Lim, and Y. P. Feng, Appl. Phys. Lett. 87, 162513 (2005).   DOI   ScienceOn
9 G. P. Zhao, N. Bo, H. W. Zhang, Y. P. Feng, and Y. Deng, J. Appl. Phys. 107, 083907 (2010).   DOI   ScienceOn
10 E. F. Kneller and R. Hawing, IEEE Trans. Magn. 27, 3588 (1991).   DOI   ScienceOn
11 T. Schrefl, H. F. Schmidts, J. Fidler, and H. K. Kronmuller, J. Appl. Phys. 80, 1667 (1996).   DOI   ScienceOn
12 W. D. Zhong, Ferromagnetics, Science Press, (china) (1987) pp. 8-14.
13 J. B. Yang, W. B. Yelon, W. J. James, Q. Cai, S. Roy, and N. Ali, J. Appl. Phys. 91, 7866 (2002).   DOI   ScienceOn
14 T. Chen and W. Stutius, IEEE Trans. Magn. 10, 581 (1974).   DOI
15 J. B. Yang, Y. B. Yang, X. G. Chen, X. B. Ma, J. Z. Han, Y. C. Yang, and S. Guo, Appl. Phys. Lett. 99, 082505 (2011).   DOI   ScienceOn