• 제목/요약/키워드: microglia

검색결과 311건 처리시간 0.034초

Increased expression of vascular endothelial growth factor-C and vascular endothelial growth factor receptor-3 after pilocarpine-induced status epilepticus in mice

  • Cho, Kyung-Ok;Kim, Joo Youn;Jeong, Kyoung Hoon;Lee, Mun-Yong;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.281-289
    • /
    • 2019
  • Vascular endothelial growth factor (VEGF)-C and its receptor, vascular endothelial growth factor receptor (VEGFR)-3, are responsible for lymphangiogenesis in both embryos and adults. In epilepsy, the expression of VEGF-C and VEGFR-3 was significantly upregulated in the human brains affected with temporal lobe epilepsy. Moreover, pharmacologic inhibition of VEGF receptors after acute seizures could suppress the generation of spontaneous recurrent seizures, suggesting a critical role of VEGF-related signaling in epilepsy. Therefore, in the present study, the spatiotemporal expression of VEGF-C and VEGFR-3 against pilocarpine-induced status epilepticus (SE) was investigated in C57BL/6N mice using immunohistochemistry. At 1 day after SE, hippocampal astrocytes and microglia were activated. Pyramidal neuronal death was observed at 4 days after SE. In the subpyramidal zone, VEGF-C expression gradually increased and peaked at 7 days after SE, while VEGFR-3 was significantly upregulated at 4 days after SE and began to decrease at 7 days after SE. Most VEGF-C/VEGFR-3-expressing cells were pyramidal neurons, but VEGF-C was also observed in some astrocytes in sham-manipulated animals. However, at 4 days and 7 days after SE, both VEGFR-3 and VEGF-C immunoreactivities were observed mainly in astrocytes and in some microglia of the stratum radiatum and lacunosum-moleculare of the hippocampus, respectively. These data indicate that VEGF-C and VEGFR-3 can be upregulated in hippocampal astrocytes and microglia after pilocarpine-induced SE, providing basic information about VEGF-C and VEGFR-3 expression patterns following acute seizures.

MPTP로 유도된 신경 독성에 대한 NXP031의 개선 효과 (Ameliorative Effects of NXP031 on MPTP-Induced Neurotoxicity)

  • 이주희;송민경;김연정
    • Journal of Korean Biological Nursing Science
    • /
    • 제23권3호
    • /
    • pp.199-207
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effects of NXP031, an inhibitor of oxidation by specifically binding to the complex of DNA aptamer/vitamin C, on dopaminergic neurons loss and the reaction of microglia in an animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subchronic Parkinson's disease (PD). Methods: A subchronic PD mouse model was induced via an intraperitoneal (IP) injection of MPTP 30 mg/kg per day for five days. NXP031 (vitamin C/aptamer at 200 mg/4 mg/kg) and vitamin C at 200 mg/kg were administered via IP injections at one hour after performing MPTP injection. This process was performed for five days. Motor function was then evaluated with pole and rotarod tests, after which an immunohistochemical analysis was performed. Results: NXP031 administration after MPTP injection significantly improved motor functions (via both pole and rotarod tests) compared to the control (MPTP injection only) (p<.001). NXP031 alleviated the loss of dopaminergic neurons in the substantia nigra (SN) and striatum caused by MPTP injection. It was found to have a neuroprotective effect by reducing microglia activity. Conclusion: NXP031 can improve impaired motor function, showing neuroprotective effects on dopaminergic neurons in the SN and striatum of MPTP-induced subchronic Parkinson's disease mouse model. Results of this study suggest that NXP031 has potential in future treatments for PD and interventions for nerve recovery.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

Ginsenoside Rg1 Attenuates Neuroinflammation Following Systemic Lipopolysaccharide Treatment in Mice

  • Shin, Jung-Won;Ma, Sun-Ho;Lee, Ju-Won;Kim, Dong-Kyu;Do, Kyuho;Sohn, Nak-Won
    • 대한본초학회지
    • /
    • 제28권6호
    • /
    • pp.145-153
    • /
    • 2013
  • Objectives : Neuroinflammation is characterized by microglial activation and the expression of major inflammatory mediators. The present study investigated the inhibitory effect of ginsenoside Rg1 ($GRg_1$), a principle active ingredient in Panax ginseng, on pro-inflammatory cytokines and microglial activation induced by systemic lipopolysaccharide (LPS) treatment in the mouse brain tissue. Methods : Varying doses of $GRg_1$ was orally administered (10, 20, and 30 mg/kg) 1 h before the LPS injection (3 mg/kg, intraperitoneally). The mRNA expression of pro-inflammatory cytokines in the brain tissue was measured using the quantitative real-time PCR method at 4 h after the LPS injection, Microglial activation was evaluated using western blotting and immunohistochemistry against ionized calcium binding adaptor molecule 1 (Iba1) in the brain tissue. Cyclooxigenase-2 (COX-2) expressions also observed using western blotting and immunohistochemistry at 4 h after the LPS injection, In addition, double-immunofluorescent labeling of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and COX-2 with microglia and neurons was processed in the brain tissue. Results : $GRg_1$ (30 mg/kg) significantly attenuated the upregulation of TNF-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6 mRNA in the brain tissue at 4 h after LPS injection. Morphological activation and Iba1 protein expression of microglia induced by systemic LPS injection were reduced by the $GRg_1$ (30 mg/kg) treatment. Upregulation of COX-2 protein expression in the brain tissue was also attenuated by the $GRg_1$ (30 mg/kg) treatment. Conclusion : The results suggest that $GRg_1$ is effective in the early stage of neuroinflammation which causes neurodegenerative diseases.

LPS로 유도된 미세아교세포에서 작약감초탕의 항염증 효과 (Anti-inflammatory activity of jakyakgamcho-tang on Lipopolysaccharide-Stimulated BV-2 Microglia Cells)

  • 문연자
    • 대한본초학회지
    • /
    • 제37권5호
    • /
    • pp.83-88
    • /
    • 2022
  • Objectives : Jakyakgamcho-tang (JGT) has been traditionally used to treat muscular convulsion and pain in South Korea. According to recent studies, JGT has been reported to have anti-depression, anti-inflammation, anti-oxidative, anti-diabetics, anti-spasm and analgesic effects, but studies on its anti-neuroinflammatory and neuroprotective effect have not been deeply conducted. Thus, we investigated the anti-neuroinflammatory activity of JGT on lipopolysaccharide (LPS)-stimulated mouse microglia cells. Methods : To investigate the anti-neuroinflammatory effects of JGT on BV2 microglial cells, we examined the production of nitric oxide (NO) using griess assay, and mRNA expressions of pro-inflammatory cytokines such as interleukin (IL)-1𝛽, IL-6, and tumor necrosis factor (TNF)-𝛼 using real time RT-PCR. Furthermore, to determine the regulating mechanisms of JGT, we investigated the heme oxygenase (HO)-1 by real time RT-PCR. Results : Pre-treatment of JGT effectively decreased NO production in LPS-stimulated BV2 cells at concentrations without cytotoxicity. Additionally, JGT significantly suppressed the production of IL-1𝛽, IL-6, and TNF-𝛼 in LPS-stimulated BV2 cells. Furthermore, JGT activated the HO-1 expression, which is one of the immunomodulatory signaling molecules. And the abolishment of HO-1 by tin protoporphyrin IX (SnPP, the HO-1 inhibitor) reversed the anti- inflammatory activity of JGT in LPS-stimulated BV2 cells. Conclusions : Our results suggest that the JGT has anti-neuroinflammatory effect through the activation of HO-1 in LPS-stimulated BV2 cells. Thereby, JGT could expected to be used for the prevention and treatment of neurodegenerative disease related to neuroinflammation.

뇌 신경교세포에서 가미보양환오탕(加味補陽還五湯) 분획물의 항염증 효과 비교 연구 (Anti-inflammatory Effects of Different Fractions Isolated from Modified Boyanghwano-tang Extract in LPS-stimulated Microglial Cells)

  • 손혜영;박용기
    • 대한본초학회지
    • /
    • 제24권4호
    • /
    • pp.173-179
    • /
    • 2009
  • Objectives : In this study, the effects of different fractions isolated from modified Boyanghwanotang(mBHT) extract on LPS-induced inflammation in BV2 microglial cells were investigated. Methods : mBHT was extracted with water, and then fractionated with n-hexane, methylene chloride, ethylacetate and n-butanol. BV2 cells, a mouse microglia line were incubated with different concentrations of each fraction of mBHT for 30 min, and then stimulated with LPS for 24 h. Cell toxicity was determined by MTT assay. The concentration of nitric oxide (NO) was measured in culture medium by Griess reagent assay. The expression of inducible nitric oxide synthease (iNOS) protein was determined by Western blot. Results : Four fractions of mBHT were significantly inhibited LPS-induced NO productions in BV2 cells in a dose-dependent manner. The methylene chloride fraction of mBHT was most strongly inhibited the NO production compared with those of the others. The methylene chloride fraction of mBHT was also suppressed LPS-induced iNOS expression comparison of other fractions at same concentration ($50\;{\mu}g/ml$) in BV2 cells. Conclusions : The results showed that the methylene chloride fraction of mBHT may have an strong anti-inflammatory property through the inhibition of NO production and iNOS expression in activated microglia, and could a therapeutic potential for the treatment of various brain inflammatory diseases.

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.

LPS로 자극한 microglia BV2 cell에서 Cyrtomium fortunei J.Sm. 추출물의 항염증 효과 (Anti-inflammation Effect of Cyrtomium fortunei J.Sm. Extracts in Lipopolysaccharides-induced Microglia BV2 Cell)

  • 최지원;김신태;최상윤;최인욱;허진영
    • 한국식생활문화학회지
    • /
    • 제38권3호
    • /
    • pp.176-183
    • /
    • 2023
  • In this study, we investigated the effect of the extracts of Cyrtomium fortunei J.Sm. (CFJ) on lipopolysaccharide (LPS) induced inflammation in mouse BV-2 microglial cells. Nitric oxide (NO) production and cell viability were measured using the Griess reagent and the (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) assay. Inflammatory cytokines were detected by quantitative polymerase chain reaction (qPCR) in BV-2 microglial cells with and without CFJ extracts. Subsequently, mitogen-activated protein kinases (MAPKs) and antioxidant markers were assessed by western blot analysis. It was found that the CFJ extract significantly decreased the production of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1β) and NO in BV-2 microglial cells that were stimulated with LPS. In addition, the expression levels of the phosphorylation of the MAPK family (p38, c-Jun N-terminal kinases [JNK], and extracellular-signal regulated kinase [ERK]) were reduced by CFJ. Also, treatment with CFJ significantly increased the activities of superoxide dismutase type 1(SOD1) and Catalase in BV-2 microglial cells. Our results indicate that CFJ has a potent suppressive effect on the pro-inflammatory responses of activated BV-2 microglia. Therefore, CFJ has the potential to be an effective treatment for neurodegenerative diseases, as it can inhibit the production of inflammatory mediators in activated BV-2 microglial cells.

The complement system: a potential target for the comorbidity of chronic pain and depression

  • Shanshan Tang;Wen Hu;Helin Zou;Qingyang Luo;Wenwen Deng;Song Cao
    • The Korean Journal of Pain
    • /
    • 제37권2호
    • /
    • pp.91-106
    • /
    • 2024
  • The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.

LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과 (Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia)

  • 이화정;서민철;백민희;신용표;이준하;김인우;황재삼;김미애
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1078-1084
    • /
    • 2020
  • 흰점박이꽃무지는 딱정벌레목 풍뎅이과에 속하는 곤충이며, 현재 국내에서는 식용곤충 자원으로써 단백질 공급원일 뿐만 아니라 간보호 효과와 혈행개선 등에 유용한 생리활성 물질을 다량 함유하고 있는 것으로 보고되고 있다. 항균 펩타이드(antimicrobial peptide, AMP)는 미생물에서부터 포유동물에 이르기까지 다양한 종에서 발견되며 생명체의 선천성 면역체계에서 중요한 역할을 한다. 또한 AMPs는 광범위하게 항균활성을 나타내며 면역, 거부 반응, 내성 등의 문제없이 자연적으로 생성된 자연항생제로 알려져 있다. 활성화된 미세아교세포는 tumor necrosis factor-α (TNF-α), nitric oxide (NO) 및 reactive oxygen species (ROS) 등의 염증매개물질들을 다량 분비하는데 이러한 염증매개물질들은 신경세포사멸의 주원인으로 작용하게 된다. 그러므로 본 연구에서는 미세아교세포를 이용하여 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과를 조사하였다. 그 결과, Protaetiamycine 6는 LPS에 의해서 증가한 NO 생성을 현저히 억제하였고, iNOS와 COX-2 발현량을 감소시켰으며 LPS에 의해 분비되는 염증성 cytokine의 생성량도 농도의존적으로 감소시켰다. 이러한 결과로 보아 Protaetiamycine 6는 신경염증 및 퇴행성 신경질환의 예방 및 치료 기능성 소재 개발에 이용될 수 있을 것으로 판단된다.