DOI QR코드

DOI QR Code

The complement system: a potential target for the comorbidity of chronic pain and depression

  • Shanshan Tang (Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University) ;
  • Wen Hu (Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University) ;
  • Helin Zou (Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University) ;
  • Qingyang Luo (Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University) ;
  • Wenwen Deng (Department of Cardiology, Affiliated Hospital of Zunyi Medical University) ;
  • Song Cao (Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University)
  • Received : 2023.10.10
  • Accepted : 2023.12.16
  • Published : 2024.04.01

Abstract

The mechanisms of the chronic pain and depression comorbidity have gained significant attention in recent years. The complement system, widely involved in central nervous system diseases and mediating non-specific immune mechanisms in the body, remains incompletely understood in its involvement in the comorbidity mechanisms of chronic pain and depression. This review aims to consolidate the findings from recent studies on the complement system in chronic pain and depression, proposing that it may serve as a promising shared therapeutic target for both conditions. Complement proteins C1q, C3, C5, as well as their cleavage products C3a and C5a, along with the associated receptors C3aR, CR3, and C5aR, are believed to have significant implications in the comorbid mechanism. The primary potential mechanisms encompass the involvement of the complement cascade C1q/C3-CR3 in the activation of microglia and synaptic pruning in the amygdala and hippocampus, the role of complement cascade C3/C3a-C3aR in the interaction between astrocytes and microglia, leading to synaptic pruning, and the C3a-C3aR axis and C5a-C5aR axis to trigger inflammation within the central nervous system. We focus on studies on the role of the complement system in the comorbid mechanisms of chronic pain and depression.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (81960263, 82260231), and the Famous Clinical Doctor Program ([2021]002) of the Zunyi Medical University.

References

  1. Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 2020; 161: 1976-82. https://doi.org/10.1097/j.pain.0000000000001939
  2. Barroso J, Branco P, Apkarian AV. Brain mechanisms of chronic pain: critical role of translational approach. Transl Res 2021; 238: 76-89. https://doi.org/10.1016/j.trsl.2021.06.004
  3. Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D. The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain 2011; 152: 2836-43. https://doi.org/10.1016/j.pain.2011.09.014
  4. Rizvi SJ, Gandhi W, Salomons T. Reward processing as a common diathesis for chronic pain and depression. Neurosci Biobehav Rev 2021; 127: 749-60. https://doi.org/10.1016/j.neubiorev.2021.04.033
  5. Zhou W, Jin Y, Meng Q, Zhu X, Bai T, Tian Y, et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat Neurosci 2019; 22: 1649-58. Erratum in: Nat Neurosci 2019; 22: 1945.
  6. Pillai A. Chronic stress and complement system in depression. Braz J Psychiatry 2022; 44: 366-7.
  7. Perlmutter DH, Colten HR. Molecular immunobiology of complement biosynthesis: a model of singlecell control of effector-inhibitor balance. Annu Rev Immunol 1986; 4: 231-51.
  8. Singhrao SK, Neal JW, Rushmere NK, Morgan BP, Gasque P. Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 1999; 79: 1247-59.
  9. Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14: 1145649.
  10. Warwick CA, Keyes AL, Woodruff TM, Usachev YM. The complement cascade in the regulation of neuro-inflammation, nociceptive sensitization, and pain. J Biol Chem 2021; 297: 101085.
  11. Tong Y, Liu J, Yang T, Wang J, Zhao T, Kang Y, et al. Association of pain with plasma C5a in patients with neuromyelitis optica spectrum disorders during remission. Neuropsychiatr Dis Treat 2022; 18: 1039-46. https://doi.org/10.2147/NDT.S359620
  12. Togha M, Rahimi P, Farajzadeh A, Ghorbani Z, Faridi N, Zahra Bathaie S. Proteomics analysis revealed the presence of inflammatory and oxidative stress markers in the plasma of migraine patients during the pain period. Brain Res 2022; 1797: 148100.
  13. Yi D, Wang K, Zhu B, Li S, Liu X. Identification of neuropathic pain-associated genes and pathways via random walk with restart algorithm. J Neurosurg Sci 2021; 65: 414-20.
  14. Wang K, Yi D, Yu Z, Zhu B, Li S, Liu X. Identification of the hub genes related to nerve injury-induced neuropathic pain. Front Neurosci 2020; 14: 488.
  15. Zhou J, Li J, Ma L, Cao S. Zoster sine herpete: a review. Korean J Pain 2020; 33: 208-15. https://doi.org/10.3344/kjp.2020.33.3.208
  16. Peng Z, Guo J, Zhang Y, Guo X, Huang W, Li Y, et al. Development of a model for predicting the effectiveness of pulsed radiofrequency on zoster-associated pain. Pain Ther 2022; 11: 253-67. https://doi.org/10.1007/s40122-022-00355-3
  17. Reddy PV, Talukdar PM, Subbanna M, Bhargav PH, Arasappa R, Venkatasubramanian G, et al. Multiple complement pathway-related proteins might regulate immunopathogenesis of major depressive disorder. Clin Psychopharmacol Neurosci 2023; 21: 313-9. https://doi.org/10.9758/cpn.2023.21.2.313
  18. Luo X, Fang Z, Lin L, Xu H, Huang Q, Zhang H. Plasma complement C3 and C3a are increased in major depressive disorder independent of childhood trauma. BMC Psychiatry 2022; 22: 741.
  19. Yao Q, Li Y. Increased serum levels of complement C1q in major depressive disorder. J Psychosom Res 2020; 133: 110105.
  20. Crider A, Feng T, Pandya CD, Davis T, Nair A, Ahmed AO, et al. Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain Behav Immun 2018; 70: 246-56. https://doi.org/10.1016/j.bbi.2018.03.004
  21. Westacott LJ, Humby T, Haan N, Brain SA, Bush EL, Toneva M, et al. Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain Behav Immun 2022; 99: 70-82.
  22. Tripathi A , Whitehead C, Surrao K , Pillai A , Madeshiya A, Li Y, et al. Type 1 interferon mediates chronic stress-induced neuroinflammation and behavioral deficits via complement component 3-dependent pathway. Mol Psychiatry 2021; 26: 3043-59. https://doi.org/10.1038/s41380-021-01065-6
  23. Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 2007; 27: 8699-708. https://doi.org/10.1523/JNEUROSCI.2018-07.2007
  24. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia 1999; 26: 201-11. https://doi.org/10.1002/(SICI)1098-1136(199905)26:3<201::AID-GLIA2>3.0.CO;2-M
  25. Zhang MM, Guo MX, Zhang QP, Chen XQ, Li NZ, Liu Q, et al. IL-1R/C3aR signaling regulates synaptic pruning in the prefrontal cortex of depression. Cell Biosci 2022; 12: 90.
  26. Quadros AU, Cunha TM. C5a and pain development: an old molecule, a new target. Pharmacol Res 2016; 112: 58-67.
  27. Yasuda M, Nagappan-Chettiar S, Johnson-Venkatesh EM, Umemori H. An activity-dependent determinant of synapse elimination in the mammalian brain. Neuron 2021; 109: 1333-49.e6. https://doi.org/10.1016/j.neuron.2021.03.006
  28. Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2022; 14: e1545.
  29. De Leo JA, Tawfik VL, LaCroix-Fralish ML. The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain 2006; 122: 17-21. https://doi.org/10.1016/j.pain.2006.02.034
  30. Deng SL, Chen JG, Wang F. Microglia: a central player in depression. Curr Med Sci 2020; 40: 391-400. https://doi.org/10.1007/s11596-020-2193-1
  31. Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70: 1467-83. https://doi.org/10.1002/glia.24191
  32. Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, Rose CM, et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer's disease mouse models. Nat Aging 2022; 2: 837-50. https://doi.org/10.1038/s43587-022-00281-1
  33. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 2018; 48: 979-91.e8. https://doi.org/10.1016/j.immuni.2018.04.016
  34. Schecter RW, Maher EE, Welsh CA, Stevens B, Erisir A, Bear MF. Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1. J Neurosci 2017; 37: 10541-53. https://doi.org/10.1523/JNEUROSCI.2679-16.2017
  35. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013; 504: 394-400. https://doi.org/10.1038/nature12776
  36. Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021; 590: 612-7. https://doi.org/10.1038/s41586-020-03060-3
  37. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci 2014; 15: 209-16. https://doi.org/10.1038/nrn3710
  38. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131: 1164-78. https://doi.org/10.1016/j.cell.2007.10.036
  39. Cong Q, Soteros BM, Wollet M, Kim JH, Sia GM. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat Neurosci 2020; 23: 1067-78. https://doi.org/10.1038/s41593-020-0672-0
  40. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 2018; 100: 120-34.e6. https://doi.org/10.1016/j.neuron.2018.09.017
  41. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J Neurosci 2016; 36: 577-89. https://doi.org/10.1523/JNEUROSCI.2117-15.2016
  42. Park SY, Kim IS. Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 2017; 49: e331.
  43. Fonseca MI, Chu SH, Hernandez MX, Fang MJ, Modarresi L, Selvan P, et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J Neuroinflammation 2017; 14: 48.
  44. Lu JH, Teh BK, Wang Ld, Wang YN, Tan YS, Lai MC, et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol Immunol 2008; 5: 9-21.
  45. Gyorffy BA, Kun J, Torok G, Bulyaki E, Borhegyi Z, Gulyassy P, et al. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc Natl Acad Sci U S A 2018; 115: 6303-8. https://doi.org/10.1073/pnas.1722613115
  46. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20: 34-50.
  47. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352: 712-6. https://doi.org/10.1126/science.aad8373
  48. Wang R, Wang Q, Xie T, Guo K. The role of glial cell activation mediated by complement system C1q/C3 in depression-like behavior in mice. J SUN Yat-sen Univ (Med Sci) 2021; 42: 328-37.
  49. Li Y, Yin Q, Li Q, Huo AR, Shen TT, Cao JQ, et al. Botulinum neurotoxin A ameliorates depressive-like behavior in a reserpine-induced Parkinson's disease mouse model via suppressing hippocampal microglial engulfment and neuroinflammation. Acta Pharmacol Sin 2023; 44: 1322-36.
  50. Yuan T, Orock A, Greenwood-Van Meerveld B. Amygdala microglia modify neuronal plasticity via complement C1q/C3-CR3 signaling and contribute to visceral pain in a rat model. Am J Physiol Gastrointest Liver Physiol 2021; 320: G1081-92. https://doi.org/10.1152/ajpgi.00123.2021
  51. Coulthard LG, Hawksworth OA, Conroy J, Lee JD, Woodruff TM. Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol Immunol 2018; 101: 176-81. https://doi.org/10.1016/j.molimm.2018.06.271
  52. Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol 2015; 194: 3542-8. https://doi.org/10.4049/jimmunol.1403068
  53. Li J, Wang H, Du C, Jin X, Geng Y, Han B, et al. hUCMSCs ameliorated CUMS-induced depression by modulating complement C3 signaling-mediated microglial polarization during astrocyte-microglia crosstalk. Brain Res Bull 2020; 163: 109-19. https://doi.org/10.1016/j.brainresbull.2020.07.004
  54. Zhang MM, Huo GM, Cheng J, Zhang QP, Li NZ, Guo MX, et al. Gypenoside XVII, an active ingredient from Gynostemma pentaphyllum, inhibits C3aR-associated synaptic pruning in stressed mice. Nutrients 2022; 14: 2418.
  55. Nie F, Wang J, Su D, Shi Y, Chen J, Wang H, et al. Abnormal activation of complement C3 in the spinal dorsal horn is closely associated with progression of neuropathic pain. Int J Mol Med 2013; 31: 1333-42. https://doi.org/10.3892/ijmm.2013.1344
  56. Mou W, Ma L, Zhu A, Cui H, Huang Y. Astrocyte-microglia interaction through C3/C3aR pathway modulates neuropathic pain in rats model of chronic constriction injury. Mol Pain 2022; 18: 17448069221140532.
  57. Zhu A, Cui H, Su W, Liu C, Yu X, Huang Y. C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 astrocytes in male rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869: 166672.
  58. Andersen SL. Neuroinflammation, early-life adversity, and brain development. Harv Rev Psychiatry 2022; 30: 24-39.
  59. Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol 2020; 11: 1825.
  60. Burke NN, Finn DP, Roche M. Neuroinflammatory mechanisms linking pain and depression. Mod Trends Pharmacopsychiatry 2015; 30: 36-50. https://doi.org/10.1159/000435931
  61. Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13: 5.
  62. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785-97. https://doi.org/10.1038/ni.1923
  63. Bohlson SS, Tenner AJ. Complement in the brain: contributions to neuroprotection, neuronal plasticity, and neuroinflammation. Annu Rev Immunol 2023; 41: 431-52.
  64. Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation 2020; 17: 354.
  65. Wu X, Gao Y, Shi C, Tong J, Ma D, Shen J, et al. Complement C1q drives microglia-dependent synaptic loss and cognitive impairments in a mouse model of lipopolysaccharide-induced neuroinflammation. Neuropharmacology 2023; 237: 109646.
  66. Zhou R, Chen SH, Zhao Z, Tu D, Song S, Wang Y, et al. Complement C3 enhances LPS-elicited neuroinflammation and neurodegeneration via the Mac1/ NOX2 pathway. Mol Neurobiol 2023; 60: 5167-83. https://doi.org/10.1007/s12035-023-03393-w
  67. Veerhuis R, Boshuizen RS, Morbin M, Mazzoleni G, Hoozemans JJ, Langedijk JP, et al. Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol Dis 2005; 19: 273-82. https://doi.org/10.1016/j.nbd.2005.01.005
  68. Madeshiya AK, Whitehead C, Tripathi A, Pillai A. C1q deletion exacerbates stress-induced learned helplessness behavior and induces neuroinflammation in mice. Transl Psychiatry 2022; 12: 50.
  69. Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, et al. Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 2013; 77: 43-57. https://doi.org/10.1016/j.neuron.2012.10.037
  70. Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45: 101340.
  71. Tenner AJ. Complement-mediated events in Alzheimer's disease: mechanisms and potential therapeutic targets. J Immunol 2020; 204: 306-15. https://doi.org/10.4049/jimmunol.1901068
  72. Liu Y, Xu SQ, Long WJ, Zhang XY, Lu HL. C5aR antagonist inhibits occurrence and progression of complement C5a induced inflammatory response of microglial cells through activating p38MAPK and ERK1/2 signaling pathway. Eur Rev Med Pharmacol Sci 2018; 22: 7994-8003.
  73. Doolen S, Cook J, Riedl M, Kitto K, Kohsaka S, Honda CN, et al. Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling. Glia 2017; 65: 1976-89. https://doi.org/10.1002/glia.23208
  74. Li J, Tian S, Wang H, Wang Y, Du C, Fang J, et al. Protection of hUC-MSCs against neuronal complement C3a receptor-mediated NLRP3 activation in CUMSinduced mice. Neurosci Lett 2021; 741: 135485.
  75. Morgan M, Deuis JR, Woodruff TM, Lewis RJ, Vetter I. Role of complement anaphylatoxin receptors in a mouse model of acute burn-induced pain. Mol Immunol 2018; 94: 68-74. https://doi.org/10.1016/j.molimm.2017.12.016
  76. Reginia A, Kucharska-Mazur J, Jablonski M, Budkowska M, Dolegowska B, Sagan L, et al. Assessment of complement cascade components in patients with bipolar disorder. Front Psychiatry 2018; 9: 614.
  77. Ishii T, Hattori K, Miyakawa T, Watanabe K, Hidese S, Sasayama D, et al. Increased cerebrospinal fluid complement C5 levels in major depressive disorder and schizophrenia. Biochem Biophys Res Commun 2018; 497: 683-8. https://doi.org/10.1016/j.bbrc.2018.02.131
  78. Alexander JJ. Blood-brain barrier (BBB) and the complement landscape. Mol Immunol 2018; 102: 26-31. https://doi.org/10.1016/j.molimm.2018.06.267
  79. Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107: 1169-87. https://doi.org/10.1111/j.1471-4159.2008.05668.x
  80. Sprong T, Brandtzaeg P, Fung M, Pharo AM, Hoiby EA, Michaelsen TE, et al. Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis. Blood 2003; 102: 3702-10. https://doi.org/10.1182/blood-2003-03-0703
  81. Paczkowski NJ, Finch AM, Whitmore JB, Short AJ, Wong AK, Monk PN, et al. Pharmacological characterization of antagonists of the C5a receptor. Br J Pharmacol 1999; 128: 1461-6.
  82. Ricklin D, Lambris JD. Complement-targeted therapeutics. Nat Biotechnol 2007; 25: 1265-75. https://doi.org/10.1038/nbt1342
  83. Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC Biophys 2014; 7: 5.
  84. Moriconi A, Cunha TM, Souza GR, Lopes AH, Cunha FQ, Carneiro VL, et al. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc Natl Acad Sci U S A 2014; 111: 16937-42. https://doi.org/10.1073/pnas.1417365111
  85. Vicente B, Saldivia S, Hormazabal N, Bustos C, Rubi P. Etifoxine is non-inferior than clonazepam for reduction of anxiety symptoms in the treatment of anxiety disorders: a randomized, double blind, non-inferiority trial. Psychopharmacology (Berl) 2020; 237: 3357-67. https://doi.org/10.1007/s00213-020-05617-6
  86. Fairley LH, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, et al. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation 2021; 18: 76.
  87. Rupprecht R, Rupprecht C, Di Benedetto B, Rammes G. Neuroinflammation and psychiatric disorders: relevance of C1q, translocator protein (18 kDa) (TSPO), and neurosteroids. World J Biol Psychiatry 2022; 23: 257-63.