Browse > Article
http://dx.doi.org/10.13048/jkm.22044

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells  

Hyun-Suk Song (Department of Pharmacology, School of Korean Medicine, Wonkwang University)
Ji-Yeong An (Department of Pharmacology, School of Korean Medicine, Wonkwang University)
Jin-Young Oh (Department of Pharmacology, School of Korean Medicine, Wonkwang University)
Dong-Uk Kim (Department of Pharmacology, School of Korean Medicine, Wonkwang University)
Bitna Kweon (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University)
Sung-Joo Park (Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University)
Gi-Sang Bae (Department of Pharmacology, School of Korean Medicine, Wonkwang University)
Publication Information
The Journal of Korean Medicine / v.43, no.4, 2022 , pp. 20-32 More about this Journal
Abstract
Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.
Keywords
Kyungok-go; Microglia; Neuro-inflammation; lipopolysaccharide;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Liu, Y., Shepherd, E. G., & Nelin, L. D. (2007). MAPK phosphatases--regulating the immune response. Nature reviews. Immunology, 7(3), 202-212. https://doi.org/10.1038/nri2035   DOI
2 Viatour, P., Merville, M. P., Bours, V., & Chariot, A. (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends in biochemical sciences, 30(1), 43-52. https://doi.org/10.1016/j.tibs.2004.11.009   DOI
3 Lee, Y., Gao, Q., Kim, E., Lee, Y., Park, S. J., Lee, H. E., Jang, D. S., & Ryu, J. H. (2015). Pretreatment with 5-hydroxymethyl-2-furaldehyde blocks scopolamine-induced learning deficit in contextual and spatial memory in male mice. Pharmacology, biochemistry, and behavior, 134, 57-64. https://doi.org/10.1016/j.pbb.2015.04.007   DOI
4 Bae, E. A., Hyun, Y. J., Choo, M. K., Oh, J. K., Ryu, J. H., & Kim, D. H. (2004). Protective effect of fermented red ginseng on a transient focal ischemic rats. Archives of pharmacal research, 27(11), 1136-1140. https://doi.org/10.1007/BF02975119   DOI
5 Lee, B., Shim, I., Lee, H., & Hahm, D. H. (2011). Rehmannia glutinosa ameliorates scopolamine-induced learning and memory impairment in rats. Journal of microbiology and biotechnology, 21(8), 874-883. https://doi.org/10.4014/jmb.1104.04012   DOI
6 Kreutzberg G. W. (1996). Microglia: a sensor for pathological events in the CNS. Trends in neurosciences, 19(8), 312-318. https://doi.org/10.1016/0166-2236(96)10049-7   DOI
7 Yang, I., Han, S. J., Kaur, G., Crane, C., & Parsa, A. T. (2010). The role of microglia in central nervous system immunity and glioma immunology. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 17(1), 6-10. https://doi.org/10.1016/j.jocn.2009.05.006   DOI
8 Hansen, D. V., Hanson, J. E., & Sheng, M. (2018). Microglia in Alzheimer's disease. The Journal of cell biology, 217(2), 459-472. https://doi.org/10.1083/jcb.201709069   DOI
9 Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Frontiers in immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376   DOI
10 Kim, M.D. (2011) The literature study on the efficacy and manufacturing process of Gyeongoggo. J Oriental Medical Classics, 24(2), 51-64. https://doi.org/10.14369/SKMC.2011.24.2.051   DOI
11 Park, MyungJae, Kim, Jeong-Soo, Lee, AhReum, Roh, Seong-Soo, Kwon, OJun, & Seo, Young-Bae. (2017). Inhibition of Inflammation by Kyeongok-go with Black ginseng in LPS-induced RAW 264.7 Macrophages. The Korea Journal of Herbology, 32(3), 19-27. https://doi.org/10.6116/KJH.2017.32.3.19   DOI
12 Kim, B. W., Koppula, S., Hong, S. S., Jeon, S. B., Kwon, J. H., Hwang, B. Y., Park, E. J., & Choi, D. K. (2013). Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways. PloS one, 8(2), e55792. https://doi.org/10.1371/journal.pone.0055792   DOI
13 Choi, J. H., Jang, M., Lee, J. I., Chung, W. S., & Cho, I. H. (2018). Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway. Frontiers in pharmacology, 9, 1444. https://doi.org/10.3389/fphar.2018.01444   DOI
14 Lee, W., & Bae, J. S. (2019). Inhibitory effects of Kyung-Ok-Ko, traditional herbal prescription, on particulate matter-induced vascular barrier disruptive responses. International journal of environmental health research, 29(3), 301-311. https://doi.org/10.1080/09603123.2018.1542490   DOI
15 Jang, M., Lee, M. J., Lee, J. M., Bae, C. S., Kim, S. H., Ryu, J. H., & Cho, I. H. (2014). Oriental medicine Kyung-Ok-Ko prevents and alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats. PloS one, 9(2), e87623. https://doi.org/10.1371/journal.pone.0087623   DOI
16 Heo. J. (1993) Donguibogam naegyeongpyeon. Seoul :Gyemyeong Publishing House. 78.
17 Block, M. L., Zecca, L., & Hong, J. S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature reviews. Neuroscience, 8(1), 57-69. https://doi.org/10.1038/nrn2038   DOI
18 Kim, W.K., Kim, L.H., & Jang, I.S. (2011) A Review Study of Scalp Acupuncture for Parkinson's Disease in China. J Oriental Neuropsychiatry, 22(4), 11-20. https://doi.org/10.7231/JON.2011.22.4.011   DOI
19 Jeong, B.J., Kim, J.W., Kim, B.Y., Woo, S.H., Na, Y.J., Shim, H.J., Lee, W.H., Lee, J.Y., Seo, H.S., & Kim, Y.H. (2006) A case of tremor in Parkinson's disease treated with Korean medicine. J Int Korean Med, 27(4), 954-960. https://doi.org/10.22246/jikm.2017.38.2.103   DOI
20 Kim, H. J., Jung, S. W., Kim, S. Y., Cho, I. H., Kim, H. C., Rhim, H., Kim, M., & Nah, S. Y. (2018). Panax ginseng as an adjuvant treatment for Alzheimer's disease. Journal of ginseng research, 42(4), 401-411. https://doi.org/10.1016/j.jgr.2017.12.008   DOI
21 Cai, M., Shin, B. Y., Kim, D. H., Kim, J. M., Park, S. J., Park, C. S., Won, d., Hong, N. D., Kang, D. H., Yutaka, Y., & Ryu, J. H. (2011). Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. Journal of ethnopharmacology, 138(3), 723-730. https://doi.org/10.1016/j.jep.2011.10.016   DOI
22 Lull, M. E., & Block, M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 7(4), 354-365. https://doi.org/10.1016/j.nurt.2010.05.014   DOI
23 Bishop, A., & Anderson, J. E. (2005). NO signaling in the CNS: from the physiological to the pathological. Toxicology, 208(2), 193-205. https://doi.org/10.1016/j.tox.2004.11.034   DOI
24 Lehnardt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg, P. A., Volpe, J. J., & Vartanian, T. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8514-8519. https://doi.org/10.1073/pnas.1432609100   DOI
25 Dawson, V. L., & Dawson, T. M. (1995). Physiological and toxicological actions of nitric oxide in the central nervous system. Advances in pharmacology (San Diego, Calif.), 34, 323-342. https://doi.org/10.1016/s1054-3589(08)61095-9   DOI
26 Korhonen, R., Lahti, A., Hamalainen, M., Kankaanranta, H., & Moilanen, E. (2002). Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Molecular pharmacology, 62(3), 698-704. https://doi.org/10.1124/mol.62.3.698   DOI
27 Williams, C. S., Mann, M., & DuBois, R. N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18(55), 7908-7916. https://doi.org/10.1038/sj.onc.1203286   DOI
28 Du, R. W., Du, R. H., & Bu, W. G. (2014). β-Arrestin 2 mediates the anti-inflammatory effects of fluoxetine in lipopolysaccharide-stimulated microglial cells. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 9(4), 582-590. https://doi.org/10.1007/s11481-014-9556-y   DOI
29 Dong, C., Davis, R. J., & Flavell, R. A. (2002). MAP kinases in the immune response. Annual review of immunology, 20, 55-72. https://doi.org/10.1146/annurev.immunol.20.091301.131133   DOI