DOI QR코드

DOI QR Code

Anti-inflammation Effect of Cyrtomium fortunei J.Sm. Extracts in Lipopolysaccharides-induced Microglia BV2 Cell

LPS로 자극한 microglia BV2 cell에서 Cyrtomium fortunei J.Sm. 추출물의 항염증 효과

  • Received : 2023.03.17
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

In this study, we investigated the effect of the extracts of Cyrtomium fortunei J.Sm. (CFJ) on lipopolysaccharide (LPS) induced inflammation in mouse BV-2 microglial cells. Nitric oxide (NO) production and cell viability were measured using the Griess reagent and the (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) assay. Inflammatory cytokines were detected by quantitative polymerase chain reaction (qPCR) in BV-2 microglial cells with and without CFJ extracts. Subsequently, mitogen-activated protein kinases (MAPKs) and antioxidant markers were assessed by western blot analysis. It was found that the CFJ extract significantly decreased the production of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1β) and NO in BV-2 microglial cells that were stimulated with LPS. In addition, the expression levels of the phosphorylation of the MAPK family (p38, c-Jun N-terminal kinases [JNK], and extracellular-signal regulated kinase [ERK]) were reduced by CFJ. Also, treatment with CFJ significantly increased the activities of superoxide dismutase type 1(SOD1) and Catalase in BV-2 microglial cells. Our results indicate that CFJ has a potent suppressive effect on the pro-inflammatory responses of activated BV-2 microglia. Therefore, CFJ has the potential to be an effective treatment for neurodegenerative diseases, as it can inhibit the production of inflammatory mediators in activated BV-2 microglial cells.

Keywords

Acknowledgement

본 연구는 한국식품연구원 기본사업의 지원을 받아 연구되었습니다(E0210200, E0212021).

References

  1. Bae KH. 2001. The medicinal plants of Korea. Kyohak-sa Press. Seoul, Korea, pp 298-299
  2. Byun MW. 2013. Immunomodulatory activities of apple seed extracts on macrophage. J. Korean Soc. Food Sci. Nutr., 42:1513-1517 https://doi.org/10.3746/jkfn.2013.42.9.1513
  3. Cho HY, Noh KH, Cho MK, Jang JH, Lee MO, Kim SH, Song YS. 2008. Anti-oxidative and anti-inflammatory effects of genistein in BALB/c mice injected with LPS. J. Korean Soc. Food Sci. Nutr., 37:1126-1135 https://doi.org/10.3746/jkfn.2008.37.9.1126
  4. Choi SY. 2013. Inhibitory effects of Cyrtomium fortunei J. Smith root extract on melanogenesis, Pharmacogn Mag., 9(35): 227-230 https://doi.org/10.4103/0973-1296.113272
  5. Dinarello CA. 1999. Cytokines as endogenous pyrogens. J. Infect. Dis., 179(2):294-304 https://doi.org/10.1086/513856
  6. Jeong JA, Kwon SH, Lee CH. 2007. Screening for antioxidative activities of extracts from aerial and underground parts of some edible and medicinal ferns. Korean J. Plant. Res. 20(2):185-192
  7. Kim MJ, Kim KBWR, Park SH, Choi JS, Ahn DH. 2017. Anti-inflammatory effect of Chondria crassicaulis ethanol extract on MAPKs and NF-κB signaling pathway in LPS-induced RAW264.7 macrophages. Korean Soc Biotechnol Bioengin J., 32:352-360 https://doi.org/10.7841/ksbbj.2017.32.4.352
  8. Lawson LJ, Perry VH, Gordon S. 1992. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405-415 https://doi.org/10.1016/0306-4522(92)90500-2
  9. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. 2005. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl. Acad. Sci., USA 102(28):9936-9994 https://doi.org/10.1073/pnas.0502552102
  10. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. 2016. The role of reactive oxygen species in the pathogenesis of alzheimer's disease, parkinson's disease, and huntington's disease: A mini review. Oxid Med Cell Longev. 2016:8590578
  11. McGeer PL, Kawamata T, Walker DG, Akiyama H, Tooyama I, McGeer EG. 1993. Microglia in degenerative neurological disease. GLIA 7(1):84-92 https://doi.org/10.1002/glia.440070114
  12. Needleman P, Isakson PC. 1997. The discovery and function of COX-2. J. Rheumatol., 49:6-8
  13. Richter-Landsberg C, Besser A. 1994. Effects of organotins on ratbrain astrocytes in culture. J. Neurochem., 63:2202-2209 https://doi.org/10.1046/j.1471-4159.1994.63062202.x
  14. Scarano FG, Baltuch G. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci., 22:219-240 https://doi.org/10.1146/annurev.neuro.22.1.219
  15. Turini ME, DuBois RN. 2002. Cyclooxygenase-2: a therapeutic target. Annu. Rev. Med., 53:35-57 https://doi.org/10.1146/annurev.med.53.082901.103952
  16. Wegiel J, Wisniewski HM. 1990. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta. Neuropathologica, 81:116-124 https://doi.org/10.1007/BF00334499
  17. Yang H, Oh KH, Yoo YC. 2015. Anti-inflammatory effect of hot water extract of aronia fruits in LPS-stimulated RAW 264.7 macrophages. J. Korean Soc. Food Sci. Nutr., 44:7-13 https://doi.org/10.3746/jkfn.2015.44.1.007
  18. Yang T, Sun D, Huang YG, Smart A, Briggs JP, Schnermann JB. 1999. Differential regulation of COX-2 expression in the kidney by lipopolysaccharide: role of CD14. Am. J. Physiol., 277(1):F10-F16 https://doi.org/10.1152/ajprenal.1999.277.1.F10
  19. Yang YZ, Tang YZ, Liu YH. 2013. Wogonoside displays anti-inflammatory effects through modulating inflammatory mediator expression using RAW264.7 cells. J. Ethnopharmacol., 148(1):271-276 https://doi.org/10.1016/j.jep.2013.04.025
  20. Yin P, Zhang Z, Li J, Shi Y, Jin N, Zou W, Gao Q, Wang W, Liu F. 2019. Ferulic acid inhibits bovine endometrial epithelial cells against LPS-induced inflammation via suppressing NK-κB and MAPK pathway. Res. Vet. Sci., 126:164-169 https://doi.org/10.1016/j.rvsc.2019.08.018
  21. Zheng T, Zhang Z. 2021. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem. Int., 148:105094