• Title/Summary/Keyword: microfluidic-chip

Search Result 155, Processing Time 0.033 seconds

Detection of Simazine, Atrazine and Ametryn Herbicides on a Microfluidic Chip Based on CE-AD (CE-AD기반의 Microfluidic chip을 이용한 Simazine과 Atrazine 그리고 Ametryn Herbicides의 검출)

  • Islam, Kamrul;Jang, You-Cheol;Chand, Rohit;Jha, Sandeep Kumar;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1688-1689
    • /
    • 2011
  • A simple and rapid capillary electrophoresis method was developed for the quantitative analysis of common triazine herbicides. Cyclic voltammetry was employed to clarify the detection voltage which showed characteristic irreversible cathodic peaks. For the analysis, the mixture of triazine herbicides was applied in a microfluidic chip to determine the CE-separated peaks. Soil sample extracts were analyzed directly after drying and redissolution with the supporting electrolyte but without other pretreatment. The results were comparable to those obtained by HPLC with UV detection. Therefore, this method can be used in the rapid determination of pesticide/herbicide residues.

  • PDF

On-Chip Fabrication of PDA Sensor Fiber Using Laser Polymerization and 3-D Hydrodynamic Focusing (3-D 유체집속효과와 레이저 중합반응을 이용한 PDA 센서 미세섬유 제작)

  • Yoo, Im-Sung;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2692-2695
    • /
    • 2008
  • Polydiacetylene (PDA) is chemosensor materials that exhibit non-fluorescent-to-fluorescent transition as well as blue-to-red visible color change upon chemical or thermal stress. They have been studied in forms of film or microarray chip, so far. In this paper, we provide a novel technique to fabricate continuous micro-fiber PDA sensor using in-situ laser-polymerization technique and 3-D hydrodynamic focusing on a microfluidic chip. The flow of a monomer solution with diacetylene (DA) monomer is focused by a sheath flow on a 3-D microfluidic chip. The focused flow is exposed to 365 nm UV laser beam for in-situ polymerization which generates a continuous fiber containing DA monomers. Then, the fiber is exposed to 254 nm UV light to polymerize DA monomers to PDA. Preliminary results indicate that the fiber size can be controlled by the flow rates of the monomer solution and sheath flows and that a PDA sensor fiber successively responds to chemical and thermal stress.

  • PDF

A Ghost-Imaging System Based on a Microfluidic Chip

  • Wang, Kaimin;Han, Xiaoxuan;Ye, Hualong;Wang, Zhaorui;Zhang, Leihong;Hu, Jiafeng;Xu, Meiyong;Xin, Xiangjun;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • Microfluidic chip technology is a research focus in biology, chemistry, and medicine, for example. However, microfluidic chips are rarely applied in imaging, especially in ghost imaging. Thus in this work we propose a ghost-imaging system, in which we deploy a novel microfluidic chip modulator (MCM) constructed of double-layer zigzag micro pipelines. While in traditional situations a spatial light modulator (SLM) and supporting computers are required, we can get rid of active modulation devices and computers with this proposed scheme. The corresponding simulation analysis verifies good feasibility of the scheme, which can ensure the quality of data transmission and achieve convenient, fast ghost imaging passively.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Magnetic Bead-Based Immunoassay on a Microfluidic Lab-on-a-Chip

  • Park, Jin-Woo;Chong H. Ahn
    • The Magazine of the IEIE
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2002
  • This paper presents a basic concept of lab-on-a-chip systems and their advantages in chemical and biological analyses. In addition, magnetic bead-based immunoassay on a microfluidic system is also presented as a typical example of lab-on-chip systems. Rapid and low volume immunoassays have been successfully achieved on the demonstrated lab-on-a-chip using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Total time required for an immunoassay was less than 20 minutes including sample incubation time, and sample volume wasted was less than $50{\mu}l$ during five repeated assays. Lab-on-a-chip is becoming a revolutionary tool for many different applications in chemical and biological analysis due to its fascinating advantages (fast and low cost) over conventional chemical or biological laboratories. Furthermore, simplicity of lab-on-a-chip systems will enable self-testing capability for patients or health consumers overcoming space limitation.

  • PDF

Polymers for Microfluidic Chips

  • Song Simon;Lee Kuen-Yong
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • Microfluidic systems have attracted much research attention recently in the areas of genomics, proteomics, pharmaceutics, clinical diagnostics, and analytical biochemistry, as they provide miniaturized platforms for conventional analysis techniques. The microfluidic systems allow faster and cheaper analysis using much smaller amounts of sample and reagent than conventional methods. Polymers have recently found useful applications in microfluidic systems due to the wide range of available polymeric materials and the relative ease of chemical modification. This paper discusses the fundamentals of microfluidic systems and the roles, essential properties and various forms of polymers used as solid supports in microfluidic systems, based on the recent advances in the use of polymers for microfluidic chips.

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Fabrication and application of cell-based microfluidic chip for eye-irritation test of chemicals (화학 물질의 안자극 시험용 세포 기반 미세유체 칩의 제작 및 응용)

  • Cho, Sujin;Rhee, Seog Woo
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • This study presents the development of cell-based microfluidic chips for the performance of acute eye irritation tests due to chemicals and examined some of their applications. Microfluidic chips were fabricated by photolithography and soft lithography, and they had three compartments with different areas for cell culture. Rabbit corneal epithelial cells were used for the eye irritation test. The death of cells cultured inside the chip was monitored at regular time intervals after treatment with an aqueous solution of chemicals, and the cell death rate constants were calculated based on the viability curve. The performance of the microfluidic chip was verified by examining the effects of cell-cell junctions, cell-substrate adhesion, and initial cell numbers compared to cell death rates. Eye irritation tests were performed at various concentrations of an aqueous solution of sodium dodecyl sulfate (SDS), a standard substance for the eye irritant test. The cells were exposed to the SDS aqueous solution for 300 s, and the resulting eye irritation was assessed by cell viability. Finally, the equation for calculating the toxicity score (TS) was derived based on the weighting factor for each compartment in the chip. The cell-based microfluidic chip developed in this study may be used for eye irritation tests from chemicals used in cosmetics and pharmaceuticals.

New Materials Based Lab-on-a-Chip Microreactors: New Device for Chemical Process

  • Kim, Dong-Pyo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.51-51
    • /
    • 2012
  • There is a growing interest in innovative chemical synthesis in microreactors owing to high efficiency, selectivity, and yield. In microfluidic systems, the low-volume spatial and temporal control of reactants and products offers a novel method for chemical manipulation and product generation. Glass, silicon, poly(dimethylsiloxane) (PDMS), and plastics have been used for the fabrication of miniaturized devices. However, these materials are not the best due to either of low chemical durability or expensive fabrication costs. In our group, we have recently addressed the demand for economical resistant materials that can be used for easy fabrication of microfluidic systems with reliable durability. We have suggested the use of various specialty polymers such as silicon-based inorganic polymers and fluoropolymer, flexible polyimide (PI) films that have not been used for microfluidic devices, although they have been used for other areas. And inexpensive lithography techniques were used to fabricate Lab-on-a-Chip type of microreactors with differently devised microchannel design. These microreactors were demonstrated for various synthetic reactions: liquid, liquid-gas organic chemical reactions in heterogeneous catalytic processes, syntheses of polymer and non-trivial inorganic materials. The microreactors were inert, and withstand even harsh conditions, including hydrothermal reaction. In addition, various built-in microstructures inside the microchannels, for example Pd decorated peptide nanowires, definitely enhance the uniqueness and performance of microreactors. These user-friendly Lab-on-a-Chip devices are useful alternatives for chemist and chemical engineer to conventional chemical tools such as glass.

  • PDF

Fabrications and Characteristics of Microfluidic Systems Actuated by Thermopneumatic Method (열공압 방식으로 구동되는 매세 유체 제어 시스템의 제작 및 특성)

  • Yoo Jong-Chul;Kang C. J.;Kim Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.88-92
    • /
    • 2006
  • We present a microfluidic system with microvalves and a micropump that are easily integrated on the same substrate using the same fabrication process. The fabricated microfluidic system is suitable for use as a disposable device and its characteristics are optimized for use as a micro chemical analysis system (micro-TAS) and lab-on-a-chip. The system is realized by means of a polydimethylsiloxane (PDMS)-glass chip and an indium tin oxide (ITO) heater. We demonstrate the integration of the micropump and microvalves using a new thermopneumatic-actuated PDMS-based microfluidic system. A maximum pumping rate of about 730 nl/min is observed at. a duty ratio of 1 $\%$ and a frequency of 2 Hz with a fixed power of 500 mW. The measured power at flow cut-off is 500 mW for the microvalve whose channel width, depth and membrane thickness were 400 $\mu$m, 110 $\mu$m, and 320 $\mu$m, respectively.