Polymers for Microfluidic Chips

  • Song Simon (Department of Mechanical Engineering, Hanyang University) ;
  • Lee Kuen-Yong (Department of Bioengineering, Hanyang University)
  • Published : 2006.04.01

Abstract

Microfluidic systems have attracted much research attention recently in the areas of genomics, proteomics, pharmaceutics, clinical diagnostics, and analytical biochemistry, as they provide miniaturized platforms for conventional analysis techniques. The microfluidic systems allow faster and cheaper analysis using much smaller amounts of sample and reagent than conventional methods. Polymers have recently found useful applications in microfluidic systems due to the wide range of available polymeric materials and the relative ease of chemical modification. This paper discusses the fundamentals of microfluidic systems and the roles, essential properties and various forms of polymers used as solid supports in microfluidic systems, based on the recent advances in the use of polymers for microfluidic chips.

Keywords

References

  1. M. J. Heller, Annu. Rev. Biomed. Eng., 4, 129 (2002) https://doi.org/10.1146/annurev.bioeng.4.020702.153438
  2. K. M. Kurian, C. J. Watson, and A. H. Wyllie, J. Pathol., 187, 267 (1999) https://doi.org/10.1002/(SICI)1096-9896(199902)187:3<267::AID-PATH275>3.0.CO;2-#
  3. S. C. Jakeway, A. J. de Mello, and E. L. Russell, Fresenius J. Anal. Chem., 366, 525 (2000) https://doi.org/10.1007/s002160051548
  4. D. R. Reyes, D. Isossifidis, P.-A. Auroux, and A. Manz, Anal. Chem., 74, 2623 (2002) https://doi.org/10.1021/ac0202435
  5. P.-A. Auroux, D. Isossifidis, D. R. Reyes, and A. Manz, Anal. Chem., 74, 2637 (2002) https://doi.org/10.1021/ac020239t
  6. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem., 76, 3373 (2004) https://doi.org/10.1021/ac040063q
  7. N. Lion, T. C. Rohner, L. Dayon, I. L. Arnaud, E. Damoc, N. Youhnovski, Z.-Y. Wu, C. Roussel, J. Josserand, H. Jensen, J. S. Rossier, M. Przybylski, and H. H. Gilault, Electrophoresis, 24, 3533 (2003) https://doi.org/10.1002/elps.200305629
  8. D. Erickson and D. Li, Anal. Chem. Acta, 507, 11 (2004) https://doi.org/10.1016/j.aca.2003.09.019
  9. Y. Jiang, P. C. Wang, L. E. Locascio, and C. S. Lee, Anal. Chem., 73, 2048 (2001) https://doi.org/10.1021/ac001474j
  10. S. Song, A. K. Singh, T. J. Shepodd, and B. J. Kirby, Anal. Chem., 76, 2367 (2004) https://doi.org/10.1021/ac035290r
  11. N. Xu, Y. Lin, S. A. Hofstadler, D. Matson, C. J. Call, and R. D. Smith, Anal. Chem., 70, 3553 (1998) https://doi.org/10.1021/ac980233x
  12. S. Song and A. K. Singh, Anal. Bioanal. Chem., 384, 41 (2006) https://doi.org/10.1007/s00216-005-0206-3
  13. M.-S. Chun, M. S. Shim, and N. W. Choi, Lab Chip, 6, 302 (2006) https://doi.org/10.1039/b514327f
  14. G. T. A. Kovacs, K. Petersen, and M. Albin, Anal. Chem., 68, A407 (1996) https://doi.org/10.1021/ac961977i
  15. J. S. Rossier, P. Bercier, A. Schwarz, S. Loridant, and H. H. Girault, Langmuir, 15, 5173 (1999) https://doi.org/10.1021/la9809877
  16. J. Rossier, F. Reymond, and P. E. Michel, Electrophoresis, 23, 858 (2002) https://doi.org/10.1002/1522-2683(200203)23:6<858::AID-ELPS858>3.0.CO;2-3
  17. H. Becker and L. E. Locascio, Talanta, 56, 267 (2002) https://doi.org/10.1016/S0039-9140(01)00594-X
  18. J. Brandrup, E. H. Immergut, and E. A. Grulke, Eds., Polymer Handbook, 4th Ed., John Wiley & Sons, New York, 1999
  19. C. A. Harper, Modern Plastics Handbook, McGraw-Hill, New York, 2000
  20. M. A. Roberts, J. S. Rossier, P. Bercier, and H. Girault, Anal. Chem., 69, 2035 (1997) https://doi.org/10.1021/ac961038q
  21. L. E. Locascio, C. E. Perso, and C. S. Lee, J. Chromatogr. A, 857, 275 (1999) https://doi.org/10.1016/S0021-9673(99)00774-8
  22. M. L. Branham, W. Maccrehan, and L. E. Locascio, J. Capillary Electophoresis, 6, 43 (1999)
  23. S. L. R. Barker, D. Ross, M. J. Tarlov, M. Gaitan, and L. E. Locascio, Anal. Chem., 72, 5925 (2000) https://doi.org/10.1021/ac0008690
  24. D. C. Duffy, J. C. Mcdonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem., 70, 4974 (1998) https://doi.org/10.1021/ac980656z
  25. A. C. Henry, T. J. Tutt, M. Galloway, Y. Y. Davidson, C. S. Mcwhorter, S. A. Soper, and R. L. Mccarley, Anal. Chem., 72, 5331 (2000) https://doi.org/10.1021/ac000685l
  26. J. S. Rossier, G. Gokulrangan, H. H. Girault, S. Svojanovsky, and G. S. Wilson, Langmuir, 16, 8489 (2000) https://doi.org/10.1021/la0006667
  27. D. S. Peterson, Lab Chip, 5, 132 (2005) https://doi.org/10.1039/b405311g
  28. E. Verpoorte, Lab Chip, 3, 60N (2003) https://doi.org/10.1039/b313217j
  29. H. Andersson, W. van der Wijngaart, P. Enoksson, and G. Stemme, Sensor Actuat. B-Chem., 67, 203 (2000) https://doi.org/10.1016/S0925-4005(00)00413-5
  30. A. Russom, A. Ahmadian, H. Andersson, P. Nilsson, and G. Stemme, Electrophoresis, 24, 158 (2003) https://doi.org/10.1002/elps.200390008
  31. K. W. Ro, W.-J. Chang, H. Kim, Y.-M. Koo, and J. H. Hahn, Electrophoresis, 24, 3253 (2003) https://doi.org/10.1002/elps.200305568
  32. K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem., 72, 1144 (2000) https://doi.org/10.1021/ac991151r
  33. K. Sato, M. Yamanaka, H. Takahashi, M. Tokeshi, H. Kimura, and T. Kitamori, Electrophoresis, 23, 734 (2002) https://doi.org/10.1002/1522-2683(200203)23:5<734::AID-ELPS734>3.0.CO;2-W
  34. C. Wang, R. Oleschuk, F. Ouchen, J. J. Li, P. Thibault, and D. J. Harrison, Rapid Commun. Mass Spec., 14, 1377 (2000) https://doi.org/10.1002/1097-0231(20000815)14:15<1377::AID-RCM31>3.0.CO;2-2
  35. H. Andersson, C. Jonsson, C. Moberg, and G. Stemme, Electrophoresis, 22, 3876 (2001) https://doi.org/10.1002/1522-2683(200110)22:18<3876::AID-ELPS3876>3.0.CO;2-P
  36. T. T. Huang, T. Geng, D. Akin, W. J. Chang, J. Sturgis, R. Bashir, A. K. Bhunia, J. P. Robinson, and M. R. Ladisch, Biotechnol. Bioeng., 83, 416 (2003) https://doi.org/10.1002/bit.10680
  37. H. Mcnally, M. Pingle, S. W. Lee, D. Guo, D. E. Bergstrom, and R. Bashir, Appl. Surf. Sci., 214, 109 (2003) https://doi.org/10.1016/S0169-4332(03)00266-6
  38. N. Malmstadt, P. Yager, A. S. Hoffman, and P. S. Stayton, Anal. Chem., 75, 2943, (2003) https://doi.org/10.1021/ac034274r
  39. P. C. Wang, D. L. Devoe, and C. S. Lee, Electrophoresis, 22, 3857 (2001) https://doi.org/10.1002/1522-2683(200110)22:18<3857::AID-ELPS3857>3.0.CO;2-N
  40. N. Lion, J. O. Gellon, H. Jensen, and H. H. Girault, J. Chromatogr. A, 1003, 11 (2003) https://doi.org/10.1016/S0021-9673(03)00771-4
  41. J. Gao, J. D. Xu, L. E. Locascio, and C. S. Lee, Anal. Chem., 73, 2648 (2001) https://doi.org/10.1021/ac001126h
  42. P. C. Wang, J. Gao, and C. S. Lee, J. Chromatogr. A, 942, 115 (2002) https://doi.org/10.1016/S0021-9673(01)01399-1
  43. R. F. Ismagilov, J. M. K. Ng, P. J. A. Kenis, and G. M. Whitesides, Anal. Chem., 73, 5207 (2001) https://doi.org/10.1021/ac010502a
  44. J. H. Dai, T. Ito, L. Sun, and R. M. Crooks, J. Am. Chem. Soc., 125, 13026 (2003) https://doi.org/10.1021/ja0374776
  45. S. S. Park, S. I. Cho, M. S. Kim, Y. K. Kim, and B. G. Kim, Electrophoresis, 24, 200 (2003) https://doi.org/10.1002/elps.200390015
  46. H. Hisamoto, Y. Shimizu, K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hibara, and T. Kitamori, Anal. Chem., 75, 350 (2003) https://doi.org/10.1021/ac025794+
  47. S. Song, A. K. Singh, and B. J. Kirby, Anal. Chem., 76, 4589, (2004) https://doi.org/10.1021/ac0497151
  48. A. Malik, Electrophoresis, 23, 3973 (2002) https://doi.org/10.1002/elps.200290013
  49. K. Morishima, B. D. Bennett, M. T. Dulay, J. P. Quirino, and R. N. Zare, J. Sep. Sci., 25, 1226 (2002) https://doi.org/10.1002/1615-9314(20021101)25:15/17<1226::AID-JSSC1226>3.0.CO;2-G
  50. K. A. Wolfe, M. C. Breadmore, J. P. Ferrance, M. E. Power, J. F. Conroy, P. M. Norris, and J. P. Landers, Electrophoresis, 23, 727 (2002) https://doi.org/10.1002/1522-2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O
  51. P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov, Anal. Biochem., 278, 123 (2000) https://doi.org/10.1006/abio.1999.4363
  52. C. B. Park and D. S. Clark, Biotechnol. Bioeng., 78, 229 (2002) https://doi.org/10.1002/bit.10238
  53. W. Zhan, G. H. Seong, and R. M. Crooks, Anal. Chem., 74, 4647 (2002) https://doi.org/10.1021/ac020340y
  54. D. T. Eddington and D. J. Beebe, Adv. Drug Deliv. Rev., 56, 199 (2004)
  55. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Nature, 404, 588 (2000) https://doi.org/10.1038/35007047
  56. Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, Appl. Phys. Lett., 78, 2589 (2001) https://doi.org/10.1063/1.1367010
  57. D. Kuckling, M. E. Harmon, and C. W. Frank, Macromolecules, 35, 6377 (2002) https://doi.org/10.1021/ma0203041
  58. M. E. Harmon, M. Tang, and C. W. Frank, Polymer, 44, 4547 (2003) https://doi.org/10.1016/S0032-3861(03)00463-4
  59. W. J. Jeong, J. Y. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong, and S. H. Lee, Langmuir, 21, 3738 (2005) https://doi.org/10.1021/la050105l
  60. M. Lämmerhofer and W. Linder, in Monolithic Materials, F. Svec, T. B. Tennikova, and Z. Deyl, Eds., Elsevier, Amsterdam, 2003, pp 489-559
  61. D. S. Peterson, T. Rohr, F. Svec, and J. M. J. Fréchet, Anal. Chem., 75, 5328 (2003) https://doi.org/10.1021/ac034108j
  62. T. Rohr, C. Yu, M. H. Davey, F. Svec, and J. M. J. Fréchet, Electrophoresis, 22, 3959 (2001) https://doi.org/10.1002/1522-2683(200110)22:18<3959::AID-ELPS3959>3.0.CO;2-5
  63. C. Yu, S. Mutlu, P. Selvaganapathy, C. H. Mastrangelo, F. Svec, and J. M. J. Fréchet, Anal. Chem., 75, 1958 (2003) https://doi.org/10.1021/ac026455j
  64. T. Rohr, E. F. Hilder, J. J. Donovan, F. Svec, and J. M. J. Fréchet, Macromolecules, 36, 1677 (2003) https://doi.org/10.1021/ma021351w
  65. T. Rohr, D. F. Ogletree, F. Svec, and J. M. J. Fréchet, Adv. Func. Mater., 13, 264 (2003) https://doi.org/10.1002/adfm.200304229
  66. A. R. Ivanov, L. Zang, and B. L. Karger, Anal. Chem., 75, 5306 (2003) https://doi.org/10.1021/ac030163g
  67. P. D. Dalton, L. Flynn, and M. S. Shoichet, Biomaterials, 23, 3843 (2002) https://doi.org/10.1016/S0142-9612(02)00120-5
  68. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science, 272, 85 (1996) https://doi.org/10.1126/science.272.5258.85
  69. W. P. Hoffman, H. T. Phan, and P. G. Wapner, Mater. Res. Innov., 2, 87 (1998) https://doi.org/10.1007/s100190050068
  70. W. Jeong, J. Kim, S. Kim, S. Lee, G. Mensing, and D. J. Beebe, Lab Chip, 4, 576 (2004) https://doi.org/10.1039/b411249k