• Title/Summary/Keyword: microfluidic

Search Result 427, Processing Time 0.026 seconds

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells

  • An, Dami;Kim, Kwangmi;Kim, Jeongyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.355-362
    • /
    • 2014
  • We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.

Surface Modification of Polymethyl methacrylate(PMMA) by Laser Surface Treatment for Microfluidic Chip (유체소자 성능향상을 위한 Polymethyl methacrylate(PMMA)의 레이저 표면처리)

  • Shin, Sung-Kwon;Lee, Sang-Don;Lee, Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.334-337
    • /
    • 2007
  • After the advent of micro-Total Analysis Systems(${\mu}-TAS$) based on silicon various polymer for microfluidic chip has been studied. Polymer materials for microfluidic compared with silicon and glass which were traditional materials of a microfluidic chip, have the advantages of economical efficiency simple manufacturing process and wide materials selectivity corresponding to fluids. Surface energy of polymers we, however lower than silicon or glass. To overcome this problem, various surface modification methods have been investigated. The surface modification using laser has the advantage of the simple experiment that only directly irradiated laser beam on the material surface in the air. This work discuss the surface modification of polymethly methacrylate(PMMA) by 4th harmonic Nd:YAG laser (${\lambda}266nm$, pulse) treatment. After the laser treatment, the PMMA surface was investigated using a contact angle measuring instrument. The contact angle was decreased with a increase of the surface oxygen content. This result means the surface energy of PMMA was increased by the laser treatment without changing of its bulk characteristics.

Analysis of Morphological Change of Polar Bacterium using Microfluidic Device with Temperature Gradient (온도 구배가 있는 미세유체 장치를 이용한 극지 미생물의 형태 변화 분석)

  • Jeong, Seong-Geun;Park, Aeri;Jeong, Heon-Ho;Hong, Soon Gyu;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.278-284
    • /
    • 2014
  • We present microfluidic method to rapidly analyze the effect of temperature on the change of morphologies of Antarctic bacteria (Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp.). The microfluidic device is able to generate stable temperature gradient from 7 to$40^{\circ}C$ and dramatically reduce the number of experiments, experimental cost and labor, and amount of sample. Based on this approach, we found that specific bacteria transforming morphology into filament or elongated body strongly depends on cultivation temperature. Interestingly, we found that the morphologies of Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp. are elongated at below $25^{\circ}C$, above $20^{\circ}C$, above $15^{\circ}C$ and above $35^{\circ}C$, respectively. We envision the microfluidic device is a useful approach to analyze biological events with a high throughput manner.

Measurement of cell aggregation characteristics by analysis of laser-backscattering in a microfluidic rheometry

  • Shin, Se-Hyun;Hou, J.X.;Suh, Jang-Soo
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.61-66
    • /
    • 2007
  • The aggregation characteristics of red blood cells (RBCs) are known as important factors in the microvascular flow system, and increased RBC aggregation has been observed in various pathological diseases, such as thrombosis and myocardial infarction. This paper describes a simple microfluidic device for measuring the RBC aggregation by integrating a microfluidic slit rheometry and laser-backscattering technique. While a decreasing-pressure mechanism was applied to the microfluidic rheometry, a syllectogram (the light intensity versus time) showed an initial increase and a peak caused by the high shear stress-induced disaggregation, immediately followed by a decrease in the light intensity due to RBC aggregation. The critical shear stress (CST) corresponding to the peak intensity was examined as a new index of the RBC aggregation characteristics. The CST of RBCs increased with increasing aggregation-dominating protein (fibrinogen) in the blood plasma. The essential feature of this design was the combination of the rheometric-optic characterization of RBC aggregation with a microfluidic chip, which may potentially allow cell aggregation measurements to be easily carried out in a clinical setting.

Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

  • Jung, Jae-hyun;Choo, Jae-bum;Kim, Duck-Joong;Lee, Sang-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.277-280
    • /
    • 2006
  • Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 $cm^{-1}$. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

Fabrications and Characteristics of Microfluidic Systems Actuated by Thermopneumatic Method (열공압 방식으로 구동되는 매세 유체 제어 시스템의 제작 및 특성)

  • Yoo Jong-Chul;Kang C. J.;Kim Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.2
    • /
    • pp.88-92
    • /
    • 2006
  • We present a microfluidic system with microvalves and a micropump that are easily integrated on the same substrate using the same fabrication process. The fabricated microfluidic system is suitable for use as a disposable device and its characteristics are optimized for use as a micro chemical analysis system (micro-TAS) and lab-on-a-chip. The system is realized by means of a polydimethylsiloxane (PDMS)-glass chip and an indium tin oxide (ITO) heater. We demonstrate the integration of the micropump and microvalves using a new thermopneumatic-actuated PDMS-based microfluidic system. A maximum pumping rate of about 730 nl/min is observed at. a duty ratio of 1 $\%$ and a frequency of 2 Hz with a fixed power of 500 mW. The measured power at flow cut-off is 500 mW for the microvalve whose channel width, depth and membrane thickness were 400 $\mu$m, 110 $\mu$m, and 320 $\mu$m, respectively.

Enhancement of DNA Microarray Hybridization using Microfluidic Biochip (미세유체 바이오칩을 이용한 DNA 마이크로어레이 Hybridization 향상)

  • Lee, H.H.;Kim, Y.S.
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2007
  • Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.

Development of the Microfluidic Device to Regulate Shear Stress Gradients

  • Kim, Tae Hyeon;Lee, Jong Min;Ahrberg, Christian D.;Chung, Bong Geun
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.294-303
    • /
    • 2018
  • Shear stress occurs in flowing liquids, especially at the interface of a flowing liquid and a stationary solid phase. Thus, it occurs inside the artery system of the human body, where it is responsible for a number of biological functions. The shear stress level generally remains less than $70dyne/cm^2$ in the whole circulatory system, but in the stenotic arteries, which are constricted by 95%, a shear stress greater than $1,000dyne/cm^2$ can be reached. Methods of researching the effects of shear stress on cells are of large interest to understand these processes. Here, we show the development of a microfluidic device for generating shear stress gradients. The performance of the shear stress gradient generator was theoretically simulated prior to experiments. Through simple manipulations of the liquid flow, the shape and magnitude of the shear stress gradients can be manipulated. Our microfluidic device consisted of five portions divided by arrays of micropillars. The generated shear stress gradient has five distinct levels at 8.38, 6.55, 4.42, 2.97, and $2.24dyne/cm^2$. Thereafter, an application of the microfluidic device was demonstrated testing the effect of shear stress on human umbilical vein endothelial cells.

Fabrication of Circulation Structures of Microfluidic Devices for Observation and Analysis of Micrometer-Scale Chemical Reactions (마이크로미터 단위 화학 반응 관찰 및 분석을 위한 미세 유량 제어 장치의 순환구조 제작 연구)

  • Jang, Wonjun;Lee, Namjong;Jung, Dawoon;Kim, Hong-Seok;Jung, Seung Chan;Han, Jae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.342-347
    • /
    • 2022
  • In-situ analyzation and detection of real-time chemical reactions can be a significant part in interpreting the underlying mechanism in very reactive chemical reactions. To do this, first we have designed a microfluidic device (MFD) pattern for observation of synthesis of hierarchical nanostructures based on graphene oxide (GO), conjugating the well-known coupling reaction by which the solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling is enhanced in the presence of n-hydroxysuccinimide (NHS) to make amide bonding, hereafter called as the EDC coupling. Then, we have manufactured microfluidic devices with multiple tens of micrometer-sized channels that can circulate those nanomaterials to be chemically reacted in the channels. These microfluidic devices were made by negative photo lithography and soft lithography. We showed the possibility of using Raman spectroscopy to reveal the basic mechanism of the energy storage applications.