Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.4

Fabrication of Circulation Structures of Microfluidic Devices for Observation and Analysis of Micrometer-Scale Chemical Reactions  

Jang, Wonjun (Department of Materials Science and Engineering, Gachon University)
Lee, Namjong (Department of Materials Science and Engineering, Gachon University)
Jung, Dawoon (Department of Materials Science and Engineering, Gachon University)
Kim, Hong-Seok (Department of Materials Science and Engineering, Gachon University)
Jung, Seung Chan (Department of Materials Science and Engineering, Gachon University)
Han, Jae-Hee (Department of Materials Science and Engineering, Gachon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 342-347 More about this Journal
Abstract
In-situ analyzation and detection of real-time chemical reactions can be a significant part in interpreting the underlying mechanism in very reactive chemical reactions. To do this, first we have designed a microfluidic device (MFD) pattern for observation of synthesis of hierarchical nanostructures based on graphene oxide (GO), conjugating the well-known coupling reaction by which the solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling is enhanced in the presence of n-hydroxysuccinimide (NHS) to make amide bonding, hereafter called as the EDC coupling. Then, we have manufactured microfluidic devices with multiple tens of micrometer-sized channels that can circulate those nanomaterials to be chemically reacted in the channels. These microfluidic devices were made by negative photo lithography and soft lithography. We showed the possibility of using Raman spectroscopy to reveal the basic mechanism of the energy storage applications.
Keywords
Microfluidic device; EDC coupling; Real-time analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sayyar, E. Murray, S. Gambhir, G. Spinks, G. G. Wallace, and D. L. Officer, JOM, 68, 384 (2016). [DOI: https://doi.org/10.1007/s11837-015-1549-7]   DOI
2 J. P. Lopez-Alonso, F. Diez-Garcia, J. Font, M. Ribo, M. Vilanova, J. M. Scholtz, C. Gonzalez, F. Vottariello, G. Gotte, M. Libonati, and D. V. Laurents, Bioconjugate Chem., 20, 1459 (2009). [DOI: https://doi.org/10.1021/bc9001486]   DOI
3 E. F. Reznikova, J. Mohr, and H. Hein, Microsyst. Technol., 11, 282 (2005). [DOI: https://doi.org/10.1007/s00542-004-0432-1]   DOI
4 U. Okoroanyanwu, Chemistry and Lithography (Bellingham, WA: SPIE, 2010) p. 195.
5 S. H. Huang, W. H. Tan, S. Takeuchi, and F. G. Tseng, Proc. 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Hyogo, 2007) p. 449. [DOI: https://doi.org/10.1109/memsys.2007.4433068]   DOI
6 V. Srinivasan, V. K. Pamula, and R. B. Fair, Lab Chip, 4, 310 (2004). [DOI: https://doi.org/10.1039/b403341h]   DOI
7 M. A. Eddings, M. A. Johnson, and B. K. Gale, J. Micromech. Microeng., 18, 067001 (2008). [DOI: https://doi.org/10.1088/0960-1317/18/6/067001]   DOI
8 S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst., 14, 590 (2005). [DOI: https://doi.org/10. 1109/jmems.2005.844746]   DOI
9 M. A. Eddings, M. A. Johnson, and B. K. Gale, J. Micromech. Microeng., 18, 067001 (2008). [DOI: https://doi.org/10.1088/0960-1317/18/6/067001]   DOI
10 P. Rostron, S. Gaber, and D. Gaber, Laser, 21, 24 (2016).
11 H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, Sens. Actuators, A, 64, 33 (1998). [DOI: https://doi.org/10.1016/s0924-4247(98)80055-1]   DOI
12 D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, Microfluidics Based Microsystems (Springer, Dordrecht, 2010) p. 305. [DOI: https://doi.org/10.1007/978-90-481-9029-4_17]
13 A. J. deMello. Nature, 442, 394 (2006). [DOI: https://doi.org/10.1038/nature05062]   DOI
14 U. Okoroanyanwu, T. Shimokawa, J. D. Byers, D. R. Medeiros, C. G. Willson, Q. J. Niu, J.M.J. Frechet, and R. D. Allen, Proc. Microlithography '97, 3049 (SPIE, Santa Clara, USA, 1997) p. 92-103. [DOI: https://doi.org/10.1117/12.275867]   DOI
15 T. Aida, Y. Hanbu, and T. Kato, Proc. SPIE Photonics Europe, 6993 (SPIE, Strasbourg, France, 2008). [DOI: https://doi.org/10.1117/12.782157]   DOI
16 S. H. Tan, N. T. Nguyen, Y. C. Chua, and T. G. Kang, Biomicrofluidics, 4, 032204 (2010). [DOI: https://doi.org/10.1063/1.3466882]   DOI
17 K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, Microsyst. Technol., 9, 5 (2002). [DOI: https://doi.org/10.1007/s00542-002-0194-6]   DOI