Browse > Article

Enhancement of DNA Microarray Hybridization using Microfluidic Biochip  

Lee, H.H. (Department of Chemical Engineering, Myongji University)
Kim, Y.S. (Department of Nano Science and Engineering, Myongji University)
Publication Information
KSBB Journal / v.22, no.6, 2007 , pp. 387-392 More about this Journal
Abstract
Recently, microfluidic biochips for DNA microarray are providing a number of advantages such as, reduction in reagent volume, high-throughput parallel sample screening, automation of processing, and reduction in hybridization time. Particularly, the enhancement of target probe hybridization by decrease of hybridization time is an important aspect highlighting the advantage of microfluidic DNA microarray platform. Fundamental issues to overcome extremely slow diffusion-limited hybridization are based on physical, electrical or fluidic dynamical mixing technology. So far, there have been some reports on the enhancement of the hybridization with the microfluidic platforms. In this review, their principle, performance, and outreaching of the technology are overviewed and discussed for the implementation into many bio-applications.
Keywords
Microfluidic; biochip; DNA microarray; hybridization; chaotic mixer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schwarz, M. A. and P. C. Hauser (2001), Recent developments in detection methods for microfabricated analytical devices, Lab Chip 1, 1-6   DOI   ScienceOn
2 Vanderhoeven, J, K. Pappaert, B. Dutta, P. V. Hummelen, and G. Desmet (2005), DNA Microarray Enhancement Using a Continuously and Discontinuously Rotating Microchamber, Anal. Chem. 77(14), 4474-4480   DOI   ScienceOn
3 Vanderhoeven, J, K. Pappaert, B. Dutta, P. V. Hummelen, and G. Desmet (2005), Comparison of a pump-around, a diffusion-driven and a shear-driven system for the hybridization of mouse lung and testis total RNA on microarrays, Electrophoresis 26, 3773-3779
4 Liu, J., B. A. Williams, R. M. Gwirtz, B. J. Wold, and S. Quake (2006), Enhanced Signals and Fast Nucleic Acid Hybridization By Microfluidic Chaotic Mixing, Angew. Chem. Int. Ed. 45, 3618-3623   DOI   ScienceOn
5 Simonnet C. and A. Groisman (2005), Chaotic Mixing in a Steady Flow in a Microchannel, Phys. Rev. Lett. 94(13), 134501   DOI
6 Lee, H. H., J. Smoot, Z. McMurray, D. A. Stahl, and P. Yager (2006), Recirculating Flow Accelerates DNA Microarray Hybridization in A Microfluidic Device, Lab Chip 6, 1163-1170   DOI   ScienceOn
7 Lenigk, R., R. H. Liu, M. Athavale, Z. Chen, D. Ganser, J. Yang, C. Rauch, Y. Liu, B. Chan, H. Yu, M. Ray, R. Marrero, and P. Grodzinski (2002), Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays, Anal. Biochem. 311(1), 40-49   DOI   ScienceOn
8 Bynum, M. A. and G. B. Gordon (2004), Hybridization enhancement using microfluidic planetary centrifugal mixing, Anal. Chem. 76(23), 7039-7044   DOI   ScienceOn
9 Stroock, A. D., S. K. W. Dertinger, A. Ajdari, I. Mezi, H. A. Stone, and G. M. Whitesides (2002), Chaotic Mixer for Microchannels, Science 295, 647-651   DOI   ScienceOn
10 Adey, N. B., M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenhoffer, B. K. Dalley, and M. R. McNeely (2002), Gains in Sensitivity with a Device that Mixes Microarray Hybridization Solution in a 25-$\mu$m-Thick Chamber, Anal. Chem. 74, 6413-6417   DOI   ScienceOn
11 Chung, Y.-C., Y.-C. Lin, Y.-L. Hsu, W.-N. T. Chang, and M.-Z. Shiu (2004), The effect of velocity and extensional strain rate on enhancing DNA hybridization, J. Micromech. Microeng. 14(10), 1376-1383   DOI   ScienceOn
12 Yoo, J. -C., M. -C. Moon, Y. J. Choi, C. J. Kang, and Y. -S. Kim (2006), A high performance microfluidic system integrated with the micropump and microvalve on the same substrate, Microelec. Eng. 83, 1684-1687   DOI   ScienceOn
13 McQuain, M. K., K. Seale, J. Peek, T. S. Fisher, S. Levy, M. A. Stremler, and F. R. Haselton (2004), Chaotic mixer improves microarray hybridization, Anal. Biochem. 325, 215-226   DOI   ScienceOn
14 Situma C., M. Hashimoto, and S. A. Soper (2006), Merging microfluidics with microarray-based bioassays, Biomol. Eng. 23, 213-231   DOI   ScienceOn
15 Liu, R. H., R. Lenigk, R. L. Druyor-Sanchez, J. Yang, and P. Grodzinski (2003), Hybridization Enhancement Using Cavitation Microstreaming, Anal. Chem. 75(8), 1911-1917   DOI   ScienceOn
16 Yaralioglu, G. G., I. O. Wygant, T. C. Marentis, and B. T. Khuri-Yakub (2004), Ultrasonic mixing in microfluidic channels using integrated transducers, Anal. Chem. 76(13), 3694-3698   DOI   ScienceOn
17 Unger, M. A., H. -P. Chou, T. Thorsen, A. Scherer, and S. R. Quake (2000), Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science 288, 113-116   DOI   ScienceOn
18 Erickson, D., D. Li, and U. J. Krull (2003), Modeling of DNA hybridization kinetics for spatially resolved biochips, Anal. Biochem. 317, 186-200   DOI   ScienceOn
19 Edman, C. F., D. E. Raymond, D. J. Wu, E. Tu, R. G. Sosnowski, W. F. Butler, M. Nerenberg, and M. Heller (1997), Electric field directed nucleic acid hybridization on microchips, Nucleic Acids Res. 25(24), 4907-4914   DOI
20 Chung, Y.-C., Lin, Y.-C., Shiu, M.-Z., Chang, W.-N. T. (2003), Microfluidic chip for fast nucleic acid hybridization, Lab Chip 3 (4), 228-233
21 Yuen, P. K., G. Li, Y. Bao, and U. R. Muller (2003), Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays, Lab Chip 3, 46-50   DOI   ScienceOn
22 Dai, H., M. Meyer, S. Stepaniants, M. Ziman, and R. Stoughton (2002), Use of hybridization kinetics for differentiating specific from non-specific binding to oligonucleotide microarrays, Nucleic Acids Res. 30(16), e86   DOI
23 Wei, C. -W., J. -Y. Cheng, C. -T. Huang, M. -H. Yen, and T. -H. Young (2005), Using a microfluidic device for 1 (l DNA microarray hybridization in 500s, Nucleic Acids Res. 33(8), e78   DOI   ScienceOn