Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.078

Microfluidic System Based High Throughput Drug Screening System for Curcumin/TRAIL Combinational Chemotherapy in Human Prostate Cancer PC3 Cells  

An, Dami (Department of Nanobiomedical Science, Dankook University)
Kim, Kwangmi (College of Pharmacy, Dankook University)
Kim, Jeongyun (Department of Nanobiomedical Science, Dankook University)
Publication Information
Biomolecules & Therapeutics / v.22, no.4, 2014 , pp. 355-362 More about this Journal
Abstract
We have developed a fully automated high throughput drug screening (HTDS) system based on the microfluidic cell culture array to perform combinational chemotherapy. This system has 64 individually addressable cell culture chambers where the sequential combinatorial concentrations of two different drugs can be generated by two microfluidic diffusive mixers. Each diffusive mixer has two integrated micropumps connected to the media and the drug reservoirs respectively for generating the desired combination without the need for any extra equipment to perfuse the solution such as syringe pumps. The cell array is periodically exposed to the drug combination with the programmed LabVIEW system during a couple of days without extra handling after seeding the cells into the microfluidic device and also, this device does not require the continuous generation of solutions compared to the previous systems. Therefore, the total amount of drug being consumed per experiment is less than a few hundred micro liters in each reservoir. The utility of this system is demonstrated through investigating the viability of the prostate cancer PC3 cell line with the combinational treatments of curcumin and tumor necrosis factor-alpha related apoptosis inducing ligand (TRAIL). Our results suggest that the system can be used for screening and optimizing drug combination with a small amount of reagent for combinatorial chemotherapy against cancer cells.
Keywords
Microfluidic system; HTDS; Combinational chemotherapy; PC-3; TRAIL; Curcumin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sheikh, M. S. and Fornace, A. J., JR. (2000) Role of p53 family members in apoptosis. J. Cell. Physiol. 182, 171-181.   DOI   ScienceOn
2 Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S. and Mukhtar, H. (2008) Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene 27, 2055-2063.   DOI
3 Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. and Quake, S. R. (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116.   DOI
4 Wang, Z., Kim, M.-C., Marquez, M. and Thorsen, T. (2007) High-density microfl uidic arrays for cell cytotoxicity analysis. Lab. Chip 7, 740-745.   DOI   ScienceOn
5 Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E. (2001) Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335-373.   DOI   ScienceOn
6 Wilken, R., Veena, M. S., Wang, M. B. and Srivatsan, E. S. (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 12.   DOI
7 Zhang, L. and Fang, B. (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther. 12, 228-237.   DOI   ScienceOn
8 Kelley, S. K. and Ashkenazi, A. (2004) Targeting death receptors in can cer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333-339.   DOI   ScienceOn
9 Kim, J., Hegde, M. and Jayaraman, A. (2010a) Co-culture of epithelial cells and bacteria for investigating host-pathogen interactions. Lab. Chip 10, 43-50.   DOI
10 Kim, J., Hegde, M. and Jayaraman, A. (2010b) Microfl uidic co-culture of epithelial cells and bacteria for investigating soluble signal-mediated interactions. J. Vis. Exp.
11 Kim, J., Hegde, M., Kim, S. H., Wood, T. K. and Jayaraman, A. (2012a) A microfluidic device for high throughput bacterial biofilm studies. Lab. Chip 12, 1157-1163.   DOI   ScienceOn
12 Kim, J., Taylor, D., Agrawal, N., Wang, H., Kim, H., Han, A., Rege, K. and Jayaraman, A. (2012b) A programmable microfluidic cell array for combinatorial drug screening. Lab. Chip 12, 1813-1822.   DOI   ScienceOn
13 Lai, H. and Folch, A. (2011) Design and dynamic characterization of "single-stroke" peristaltic PDMS micropumps. Lab. Chip 11, 336-342.   DOI
14 Lee, P. J., Hung, P. J., Rao, V. M. and Lee, L. P. (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 94, 5-14.   DOI   ScienceOn
15 Li, N., Hsu, C. H. and Folch, A. (2005) Parallel mixing of photolithographically defi ned nanoliter volumes using elastomeric microvalve arrays. Electrophoresis 26, 3758-3764.   DOI
16 Neils, C., Tyree, Z., Finlayson, B. and Folch, A. (2004) Combinatorial mi xing of microfluidic streams. Lab. Chip 4, 342-350.   DOI
17 Shankar, S., Singh, T. R. and Srivastava, R. K. (2004) Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate 61, 35-49.   DOI   ScienceOn
18 Ohtsuka, T., Ryu, H., Minamishima, Y. A., Ryo, A. and Lee, S. W. (2003) Modulation of p53 and p73 levels by cyclin G: implication of a negative feedback regulation. Oncogene 22, 1678-1687.   DOI   ScienceOn
19 Shankar, S., Chen, X. and Srivastava, R. K. (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62, 165-186.   DOI
20 Shankar, S., Siddiqui, I. and Srivastava, R. K. (2007) Molecular mechani sms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell. Biochem. 304, 273-285.   DOI   ScienceOn
21 Beltran, H., Beer, T. M., Carducci, M. A., De Bono, J., Gleave, M., Hussain, M., Kelly, W. K., Saad, F., Sternberg, C., Tagawa, S. T. and Tannock, I. F. (2011) New therapies for castration-resistant prostate cancer: efficacy and safety. Eur. Urol. 60, 279-290.   DOI
22 Bouralexis, S., Findlay, D. M. and Evdokiou, A. (2005) Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 10, 35-51.   DOI
23 Deeb, D., Gao, X., Jiang, H., Divine, G., Dulchavsky, S. A. and Gautam, S. C. (2006) Vaccination with leukemia-loaded dendritic cells eradicates residual disease and prevent relapse. J. Exp. Ther. Oncol. 5, 183-193.
24 Graf, N. J. and Bowser, M. T. (2013) Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding. Analyst 138, 5791-5800.   DOI
25 Deeb, D., Jiang, H., Gao, X., Al-Holou, S., Danyluk, A. L., Dulchavsky, S. A. and Gautam, S. C. (2007) Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nu clear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J. Pharmacol. Exp. Ther. 321, 616-625.   DOI   ScienceOn
26 Deeb, D., Jiang, H., Gao, X., Hafner, M. S., Wong, H., Divine, G., Chapman, R. A., Dulchavsky, S. A. and Gautam, S. C. (2004) Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol. Cancer. Ther. 3, 803-812.
27 Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M. (2006) Formation of droplets and bubbles in a microfl uidic T-junction-scaling and mechanism of break-up. Lab. Chip 6, 437-446.   DOI   ScienceOn
28 Heger, M., Van Golen, R. F., Broekgaarden, M. and Michel, M. C. (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66, 222-307.
29 Hung, P. J., Lee, P. J., Sabounchi, P., Aghdam, N., Lin, R. and Lee, L. P. (2005a) A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. Lab. Chip 5, 44-48.   DOI   ScienceOn
30 Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R. and Lee, L. P. (2005b) Continuous perfusion microfluidic cell culture array for high-through put cell-based assays. Biotechnol. Bioeng. 89, 1-8.   DOI   ScienceOn
31 Adam, V., Ekblad, M., Sweeney, K., Muller, H., Busch, K. H., Johnsen, C. T., Kang, N. R., Lemoine, N. R. and Hallden, G. (2012) Synergistic and selective cancer cell killing mediated by the oncolytic adenoviral mutant addeltadelta and dietary phytochemicals in prostate cancer models. Hum. Gene Ther. 23, 1003-1015.   DOI   ScienceOn
32 Aggarwal, B. B., Kumar, A. and Bharti, A. C. (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363-398.
33 Amin, A. R., Kucuk, O., Khuri, F. R. and Shin, D. M. (2009) Perspectives for cancer prevention with natural compounds. J. Clin. Oncol. 27, 2712-2725.   DOI   ScienceOn
34 Barua, S., Linton, R. S., Gamboa, J., Banerjee, I., Yarmush, M. L. and Rege, K. (2010) Lytic peptide-mediated sensitization of TRAILresistant prostate cancer cells to death receptor agonists. Cancer Lett. 293, 240-253.   DOI
35 Simons, J. W., Mikhak, B., Chang, J. F., Demarzo, A. M., Carducci, M. A., Lim, M., Weber, C. E., Baccala, A. A., Goemann, M. A., Clift, S. M., Ando, D. G., Levitsky, H. I., Cohen, L. K., Sanda, M. G., Mulligan, R. C., Partin, A. W., Carter, H. B., Piantadosi, S., Marshall, F. F. amd Nelson, W. G. (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocytemacrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160-5168.