• 제목/요약/키워드: microenvironment

검색결과 354건 처리시간 0.031초

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD

  • So Jung Kim;Jeongeun Hyun
    • Molecules and Cells
    • /
    • 제47권2호
    • /
    • pp.100010.1-100010.12
    • /
    • 2024
  • Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.

암미세환경에서 종양관련대식세포의 역할 (Role of Tumor-associated Macrophage in Tumor Microenvironment)

  • 민도식
    • 생명과학회지
    • /
    • 제28권8호
    • /
    • pp.992-998
    • /
    • 2018
  • 암세포는 종양의 성장을 지지하는 다양한 성분으로 구성되어 있는 환경에서 자란다. 암미세환경에 존재하는 주요 세포등은 섬유아세포, 내피세포, 면역세포들이며 이들세포들은 암세포들과 서로 소통을 하고 있다 종양조직에 유입된 면역세포중에서 대식세포가 종양미세환경의 주요성분으로서 다양한 면역현상들을 조절한다. 면역세포유입에 의한 암촉진과 항암효과 간의 복잡한 균형은 종양의 성장과 진행에 필요한 만성염증 환경을 생성시킬 수 있다. 대식세포는 M1과 M2 극성화로 규정된 미세환경 신호에 반응하여 기능적으로 다른 프로그램을 작동시킬 수 있다. 종양관련대식세포는 다양한 사이토카인, 케모카인, 단백질분해효소들을 분비함으로써 암 신생혈관형성, 증식, 전이 및 면역억제를 촉진시킨다. 최근에, 종양관련대식세포는 암줄기세포와 상호작용하여 종양의 진행, 전이 및 항암제 내성을 유도하는 것으로 알려져 있다. 종양관련대식세포는 암미세환경을 유지하기위해 면역억제 기능을 획득하며, 종양의 이질성과 가소성의 특성을 갖고 있어 암관련인자 및 감염등의 노출에 의해 서로 다른 극성형질로 리프로그래밍된다. 종양관련대식세포는 기질인자의 자극에 의해 암특이적인 케모카인들을 생성하기 때문에 케모카인은 질병의 활성을 반영하는 바이오마커로 작용할 수 있다. 종양조직에 종양관련대식세포가 많이 유입될수록 환자의 예후가 좋지 않으며 항암치료에 대한 저항성이 생긴다. 따라서 종양에서 대식세포를 표적화하는 항암치료는 유망한 치료전략이 될 수 있다.

Tumor Immune Microenvironment as a New Therapeutic Target for Hepatocellular Carcinoma Development

  • Eunjeong Kim
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권4호
    • /
    • pp.167-174
    • /
    • 2023
  • Development of hepatocellular carcinoma (HCC) is driven by a multistep and long-term process. Because current therapeutic strategies are limited for HCC patients, there are increasing demands for understanding of immunotherapy, which has made technological and conceptual innovations in the treatment of cancer. Here, I discuss HCC immunotherapy in the view of interaction between liver resident cells and immune cells.

Short hairpin RNA targeting of fibroblast activation protein inhibits tumor growth and improves the tumor microenvironment in a mouse model

  • Cai, Fan;Li, Zhiyong;Wang, Chunting;Xian, Shuang;Xu, Guangchao;Peng, Feng;Wei, Yuquan;Lu, You
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.252-257
    • /
    • 2013
  • Fibroblast activation protein (FAP) is a specific serine protease expressed in tumor stroma proven to be a stimulatory factor in the progression of some cancers. The purpose of this study was to investigate the effects of FAP knockdown on tumor growth and the tumor microenvironment. Mice bearing 4T1 subcutaneous tumors were treated with liposome-shRNA complexes targeting FAP. Tumor volumes and weights were monitored, and FAP, collagen, microvessel density (MVD), and apoptosis were measured. Our studies showed that shRNA targeting of FAP in murine breast cancer reduces FAP expression, inhibits tumor growth, promotes collagen accumulation (38%), and suppresses angiogenesis (71.7%), as well as promoting apoptosis (by threefold). We suggest that FAP plays a role in tumor growth and in altering the tumor microenvironment. Targeting FAP may therefore represent a supplementary therapy for breast cancer.

The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell-like properties through modulation of self-renewal signaling

  • Oh, Jisun;Yoon, Hyo-Jin;Jang, Jeong-Hoon;Kim, Do-Hee;Surh, Young-Joon
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.421-430
    • /
    • 2019
  • Background: The ginsenoside Rg3, one of active components of red ginseng, has chemopreventive and anticancer potential. Cancer stem cells retain self-renewal properties which account for cancer recurrence and resistance to anticancer therapy. In our present study, we investigated whether the standardized Korean Red Ginseng extract (RGE) and Rg3 could modulate the manifestation of breast cancer stem cell-like features through regulation of self-renewal activity. Methods: The effects of RGE and Rg3 on the proportion of $CD44^{high}/CD24^{low}$ cells, as representative characteristics of stem-like breast cancer cells, were determined by flow cytometry. The mammosphere formation assay was performed to assess self-renewal capacities of breast cancer cells. Aldehyde dehydrogenase activity of MCF-7 mammospheres was measured by the ALDEFLUOR assay. The expression levels of Sox-2, Bmi-1, and P-Akt and the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres were verified by immunoblot analysis. Results: Both RGE and Rg3 decreased the viability of breast cancer cells and significantly reduced the populations of $CD44^{high}/CD24^{low}$ in MDA-MB-231 cells. RGE and Rg3 treatment attenuated the expression of Sox-2 and Bmi-1 by inhibiting the nuclear localization of hypoxia inducible $factor-1{\alpha}$ in MCF-7 mammospheres. Suppression of the manifestation of breast cancer stem cell-like properties by Rg3 was mediated through the blockade of Akt-mediated self-renewal signaling. Conclusion: This study suggests that Rg3 has a therapeutic potential targeting breast cancer stem cells.

구강상피세포의 배양환경의 차이에 의한 마이크로어레이 기반 유전자 발현의 융복합 분석 (The Convergence Analysis of Microarray-Based Gene Expression by Difference of Culture Environment in Human Oral Epithelial Cells)

  • 손화경
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.81-89
    • /
    • 2019
  • 이 연구는 HPV 16 E6/E7 도입 불멸화 구강상피세포의 배양 미세환경과 세포 분화간의 관계를 분석하였다. 배양환경을 변화시켜서 IHOK-EF 세포와 IHOK-EFKGM 세포를 얻었고, 이들 세포의 특성변화를 세포증식분석, 면역형광분석 및 마이크로어레이와 실시간 정량 PCR분석으로 알아보았다. IHOK-EF 세포는 상피세포의 특성을 상실하고 간엽세포의 특성을 획득하였고, 마이크로어레이 분석결과, 분화억제 유전자인 ID2, IL6, TWIST1이 과발현 되었다. 이러한 변화는 초기의 배양환경으로 회복되었을 때, 특별히, ID2와 IL6에서 유전자발현의 복귀를 나타내면서 세포의 특성이 부분적으로 회복되었다. 이 연구는 세포의 특성을 결정하는 연구에서 배양 미세환경의 변화에 따른 세포의 생존을 위한 적응양상을 이해하는데 공헌할 것이며, 향후, 암세포의 미세환경변화에 따른 생존연구에 적용하여 질병에 대한 치료적 접근을 가능하게 할 것이다.

New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study

  • Eun-Young Lee;Young-Ho Kim;Md Abu Rayhan;Hyun Guy Kang;June Hyuk Kim;Jong Woong Park;Seog-Yun Park;So Hee Lee;Hye Jin You
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.258-264
    • /
    • 2023
  • As a high-grade soft-tissue sarcoma (STS), undifferentiated pleomorphic sarcoma (UPS) is highly recurrent and malignant. UPS is categorized as a tumor of uncertain differentiation and has few options for treatment due to its lack of targetable genetic alterations. There are also few cell lines that provide a representative model for UPS, leading to a dearth of experimental research. Here, we established and characterized new cell lines derived from two recurrent UPS tissues. Cells were obtained from UPS tissues by mincing, followed by extraction or dissociation using enzymes and culture in a standard culture environment. Cells were maintained for several months without artificial treatment, and some cell clones were found to be tumorigenic in an immunodeficient mouse model. Interestingly, some cells formed tumors in vivo when injected after aggregation in a non-adherent culture system for 24 h. The tissues from in vivo study and tissues from patients shared common histological characteristics. Pathways related to the cell cycle, such as DNA replication, were enriched in both cell clones. Pathways related to cell-cell adhesion and cell-cell signaling were also enriched, suggesting a role of the mesenchymal-to-epithelial transition for tumorigenicity in vivo. These new UPS cell lines may facilitate research to identify therapeutic strategies for UPS.

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy

  • Yadav, Lalita;Puri, Naveen;Rastogi, Varun;Satpute, Pranali;Ahmad, Riyaz;Kaur, Geetpriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권3호
    • /
    • pp.1085-1091
    • /
    • 2014
  • Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.

Turning Hepatic Cancer Stem Cells Inside Out - A Deeper Understanding through Multiple Perspectives

  • Chan, Lok-Hei;Luk, Steve T.;Ma, Stephanie
    • Molecules and Cells
    • /
    • 제38권3호
    • /
    • pp.202-209
    • /
    • 2015
  • Hepatocellular carcinoma (HCC), a highly malignant disease and the third leading cause of all cancer mortalities worldwide, often responses poorly to current treatments and results in dismal outcomes due to frequent chemoresistance and tumor relapse. The heterogeneity of HCC is an important attribute of the disease. It is the outcome of many factors, including the cross-talk between tumor cells within the tumor microenvironment and the acquisition and accumulation of genetic and epigenetic alterations in tumor cells. In addition, there is accumulating evidence in recent years to show that the malignancy of HCC can be attributed partly to the presence of cancer stem cell (CSC). CSCs are capable to self-renew, differentiate and initiate tumor formation. The regulation of the stem cell-like properties by several important signaling pathways have been found to endow the tumor cells with an increased level of tumorigenicity, chemoresistance, and metastatic ability. In this review, we will discuss the recent findings on hepatic CSCs, with special emphasis on their putative origins, relationship with hepatitis viruses, regulatory signaling networks, tumor microenvironment, and how these factors control the stemness of hepatic CSCs. We will also discuss some novel therapeutic strategies targeted at hepatic CSCs for combating HCC and perspectives of future investigation.