Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.3.1085

Matrix Metalloproteinases and Cancer - Roles in Threat and Therapy  

Yadav, Lalita (Department of Oral and Maxillofacial Pathology, Kalka Dental College)
Puri, Naveen (Department of Oral and Maxillofacial Pathology, Kalka Dental College)
Rastogi, Varun (Department of Oral and Maxillofacial Pathology, Kalka Dental College)
Satpute, Pranali (Department of Oral and Maxillofacial Pathology, Goverment Dental College)
Ahmad, Riyaz (GMC)
Kaur, Geetpriya (Department of Oral and Maxillofacial Pathology, Kalka Dental College)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.3, 2014 , pp. 1085-1091 More about this Journal
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent extracellular matrix (ECM) remodelling endopeptidases having the ability to degrade almost all components of extracellular matrix and implicated in various physiological as well as pathological processes. Carcinogenesis is a multistage process in which alteration of the microenvironment is required for conversion of normal tissue to a tumour. Extracellular matrix remodelling proteinases such as MMPs are principal mediators of alterations observed in the microenvironment during carcinogenesis and according to recent concepts not only have roles in invasion or late stages of cancer but also in regulating initial steps of carcinogenesis in a favourable or unfavourable manner. Establishment of relationships between MMP overproduction and cancer progression has stimulated the development of inhibitors that block proteolytic activity of these enzymes. In this review we discuss the MMP general structure, classification, regulation roles in relation to hallmarks of cancer and as targets for therapeutic intervention.
Keywords
MMPs; MMPI; TIMP; cancer; endopeptidases; microenvironment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brew K, Dinakarpandian D, Nagase H (2000).Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochem Biophys Acta, 1477, 267-83.
2 Cao Z G, Li C Z (2006). A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter enhances oral squamous cell carcinoma susceptibility in a Chinese population. Oral Oncol, 42, 32-8.   DOI
3 Chambers A F, Groom A C, Macdonald I C (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2, 563-72.   DOI   ScienceOn
4 Chambers A F, Matrisian L M (1997). Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 89, 1260-70.   DOI   ScienceOn
5 Overall C M (2002). Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinases and new 'intracellular substrate binding domains, modules and exosites. Mol Biotechnol Chem, 383, 1059-66.
6 Nagase H, Visse R, Murphy G (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Res, 69, 562-73.   DOI   ScienceOn
7 Nelson A R, Fingleton B, Rotherberg M L, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18, 1135-49.
8 Noe V et al (2001). Release of an invasion promoter E-cadherin fragment by matrilysins and stromilysin-1. J Cell Sci, 114, 111-8.
9 Overall C M, Lopez-otin C(2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer, 2, 657-72.   DOI   ScienceOn
10 Pendas A M, Balbin M, Llano E, Jimenez M G, Lopez-otin C (1997). Structural analysis and promoter characterization of the human collagenases-3 gene (MMP-13). Genomics, 40, 222-33.   DOI   ScienceOn
11 Uria J A, Ferrando A A, Velasco G, Freije J M P, Lopez-otin C (1994). Structure and expression in breast tumours of human TIMP-3, a new member of the metalloproteinase family. Cancer Res, 54, 2091-94.
12 Lockhart A C, Braun R D, Yu D, et al (2003). Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res, 9, 586-93.
13 Lopez-otin C, Overall C M (2002). Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol, 3, 509-19.   DOI
14 Manes S, Mira E, Barbacid MM, Cipres A, et al (1997). Identification of insulin -like growth binding protein-1 as a potential physiological substrate for human stromelysins-3. J Biol Chem, 272, 25706-12.   DOI   ScienceOn
15 Lijnen H R (2001). Plasmin and matrix metalloproteinases in vascular remodelling. Thomb Haemost, 86, 324-33.
16 Lokeshwar B L, Escatel E, Zhu B (2001). Cytotoxic activity and inhibition of tumour cell invasion by derivatives of a chemically modified tetracycline CMT-3(COL-3). Curr Med Chem, 8, 271-9.   DOI
17 Maretzky T, Reiss K, Ludwig A, et al (2005). ADAM-10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion , migration and beta- catenin translocation. Proc Natl Acad Sci USA, 102, 9182-87.   DOI
18 McCawley L J, Matrisian L M (2001). Matrix metalloproteinases: they are not just for matrix anymore! Curr. Opin. Cell Biol,13, 534-40.   DOI   ScienceOn
19 Mitsiades N, Yu W H, Poulaki V, Tsokos M, Stamenkovic I (2001). Matrix metalloproteinase-7 mediated cleavage of Fas ligand protects tumour cells from chemotherapeutic drug toxicity. Cancer Res, 61, 577-81.
20 Egeblad M ,Werb Z (2002). New function for the matrix metalloproteinases in cancer progression. Nature reviews, 2, 161-74.
21 Falardeau P, Champagne P, Poyet P, Hariton C, Dupont E (2001). Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Semin Oncol, 28, 620-5.   DOI
22 Birchmeier C, Birchmeier W, Brand- saberi B (1996). Epithelialmesenchymal transition in cancer progression. ActaAnat, 156, 217-26.
23 Agrez M, Chen A, Cone R I, Pytela R, Sheppard D (1994). The ${\alpha}5{\beta}6$ integrin promotes proliferation of colon carcinoma cells through a unique region of the b6 cytoplasmic domain. J Cell Biol, 127, 547-56.   DOI
24 Basbaum C B, Werb Z (1996). Focalized proteolysis: spatial and temporal regulation of extracellular matrix at the cell surface. Current Opinions in Cell Biology, 8, 731-38.   DOI   ScienceOn
25 Benbow U, Brinckerhoff C E (1997). The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol, 15, 519-26.   DOI   ScienceOn
26 Sekhon BS (2010). Matrix metalloproteinases-an overview. Res Reports Biol, 1, 20.
27 Peschon JJ, Slack JL, Reddy P, et al (1998). An essential role for ectodomain shedding in mammalian development. Science, 282, 1281-84.   DOI   ScienceOn
28 Rundhaung J E. Matrix Metalloproteinases, angiogenesis and cancer (2003). Clin Cancer Res, 9, 551-54.
29 Sapadin A N, Fleischmajer R (2006). Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol, 54, 258-65.   DOI   ScienceOn
30 Velasco G, Pendas A M, Fueyo A ,et al (1999). Cloning and characterization of human MMP-23,a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J BiolChem, 274, 4570-76.
31 Vihinen P, Kahari V M (2002). Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int J cancer, 99, 157-66.   DOI   ScienceOn
32 Visse R, Nagase H (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, Function and Biochemistry. Circulation Research, 92,827-39.   DOI   ScienceOn
33 Waldhauer I, Goehlsdorf D, Gieseke F, et al (2008). Tumour associated MICA is shed by ADAM proteases. Cancer Res, 68, 6368-76.   DOI   ScienceOn
34 Westermarck J, Kahari V M (1999). Regulation of matrix metalloproteinase expression in tumour invasion. FASEB J, 13, 781-92.
35 Williamson R A, Marston F A, Angal S, et al (1990). Disulphide bond assignment in human tissue inhibitor of metalloproteinases(TIMP). Biochem J, 268, 267-74.
36 Jemal A, Tiwari RC, Murray T, et al (2004). Cancer statistics. CA Cancer J Clin, 54, 9-29.
37 Murray G I, Duncan M E, O'Neil P, Melvin W T, Fothergill J E (1996). Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat Med, 2, 461-2.   DOI
38 Kim J, Yu W, Kovalski K, Ossowski L (1998). Requirment of specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR based assay. Cell, 94, 353-62.   DOI   ScienceOn
39 Illman S A, Lehti K, Keski-Oja J, Lohi J (2006). Epilysin(MMP-28) induces TGF B mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci, 119, 3856-65.   DOI
40 Karin M, Chang L (2001). AP-1 glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol, 169,447-51.   DOI
41 Koolwijk P, Sidenius N, Peters E, et al (2001). Proteolysis of the urokinase-type plasminogen activator receptor by metalloproteinase-12:implication for angiogenesis in fibrin matrices. Blood, 97, 3123-31.   DOI
42 Kousidou O C, Mitropoulou T N, Roussidis A E, et al (2006). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. Int J Oncol, 26, 1101-9.
43 Kuga H, Morisaki T, Nakamura K, et al (2003). Interferon gama suppreses transforming growth factor beta induced invasion of gastric carcinoma cells through cross talk of Smad pathway in a three -dimensional culture model. Oncogene, 22, 7838-47.   DOI   ScienceOn
44 Kumar V, Abbas A K, Fausto N (2004). Robbins and Cotran Pathologic basis of disease. 7thed; Philadelphia; Saunders; Elsevier Inc, 202-3.
45 Stamenkovic I (2003). Extracellular remodelling: the role of metalloendopeptidases. J Pathol, 200, 448-64.   DOI   ScienceOn
46 Zhang Y Zhang YY, Chen B, Ding YQ (2012). Metastasisassociated Factors Facilitating the Progression of Colorectal Cancer. APJCP, 13, 2436-47.
47 Stetler-Stevenson W G (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Investig, 103, 1237-41.   DOI   ScienceOn
48 Sheu B C, Hsu S M, Ho H N, et al (2001). A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res, 61, 237-42.
49 Sternlicht M D, Werb Z (2001). How matrix metalloproteinase regulate cell behaviour. Annu Rev Cell Dev Biol, 17, 463-516.   DOI   ScienceOn
50 Stetler-stevenson W G, Krutzsch H C, Liotta L A (1989). Tissue inhibitor of metalloproteinase (TIMP-2). J BiolChem, 264, 17374-8.
51 Steward W P, Thomas A L (2000). Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Invesig Drugs, 9, 2913-22.   DOI   ScienceOn
52 Strickland D K, Ashcom J D, Williams S, et al (1990). Sequence identity between the alpha 2- macroglobulin receptor and low density lipoprotein receptor related protein suggests that this molecule is a multifunctional receptor. J BiolChem, 265, 17401-4.
53 Takeichi M (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251, 1451-55.   DOI
54 Thiery J P (2002). Epithelial mesenchymal transitions in tumour progression. Nat Rev Cancer, 2, 442-54.   DOI   ScienceOn
55 Thomas GT, Lewis MP, Speight PM (1999). Matrixmetalloproteinases and oral cancer. Oral Oncol, 227, 33.
56 Ganea E, Trifan M, Laslo A C, Putina G, Cristescu C (2007). Matrix metalloproteinases: useful and deleterious. Biochem Soc Trans, 35, 689-91.   DOI
57 Leco K J, Khokha R, Pavloff N, Hawkes S P, Edwards D R (1994). Tissue inhibitors of metalloproteinases-3 (TIMP-3) is an extracellular matrix associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem, 269, 9532-60.
58 Gialeli C, Theocharis A D, Karamanos N K (2011). Role of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 278, 16-27.   DOI   ScienceOn
59 Folgueras A R, Pendas A M, Sanchez L M, Lopez-otin C (2004). Matrix metalloproteinases in cancer: from new function to improved inhibition strategies. Int J Dev Biol, 48, 411-24.   DOI
60 Gialeli C, Kletsas D, Mavroudis D, Kalofonos H P, Tzanakakis G N (2009). Targetting epidermal growth factor receptor in solid tumours: critical evaluation of the biological importance of therapeutic monoclonal antibodies. Curr Med Chem, 16, 3797-804.   DOI
61 Gorelik L, Flavell R A (2001). Immune mediated eradication of tumours through the blockage of transforming growth factor-beta signalling in T-cells. Nature Med, 7, 1118-22.   DOI   ScienceOn
62 Greene J, Wang M, Liu Y E, et al (1996). Molecular cloning and characterisation of human tissue inhibitor of metalloproteinase 4. J BiolChem, 271, 30375-380.
63 Hanahan D, Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353-64.   DOI   ScienceOn
64 Hanahan D, Weinberg R A (2000). The hallmarks of cancer. Cell, 100, 57-70.   DOI   ScienceOn
65 Chaudhary A K, Singh M, Bharti A C, et al (2010). Genetic polymorphism of matrix metalloproteinases and their inhibitors in potentially malignant lesions of the head and neck. J Biomed Sci, 17, 10.   DOI
66 Hidalgo M, Eckhardt S G (2001). Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst, 93, 178-93.   DOI   ScienceOn
67 Ikebe T, Shinohara M, Takeuchi H, et al (1999). Gelatinolytic activity of matrix metalloproteinase in tumour tissues correlates with invasiveness of oral cancer. Clin Exp Metastasis, 17, 315-23.   DOI   ScienceOn
68 Cornelius L A, et al (1998). Matrix metalloproteinases generate angiostatin: effects on neovascularisation. J Immunol, 161,6845-52.
69 Chen L C, Noelken M E, Nagase H(1993). Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3(stromelysin- 1). Biochemistry, 32, 10289-295.   DOI
70 Choi S,Myers J N (2008). Molecular pathogenesis of oral squamous cell carcinoma: implications for Therapy. J Dent Res, 87, 14-32.   DOI   ScienceOn
71 Curran S,Murray G I (1999). Matrix metalloproteinases in tumour invasion and metastasis. J Pathol, 189, 300-8.   DOI
72 Denhardt D T, Feng B, Edwards D R, Cocuzzi E T, Malyanker U M (1993). Tissue inhibitor of metalloproteinases(TIMP aka EPA): structure, control of expression and biological functions. PharmacolTher, 59, 329-341.
73 Eccles S A et al (1996). Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res, 56, 2815-22.
74 Ferreras M, Felbor U, Lenhard T, Olsen B R, Delaisse J (2000). Generation and degradation of human endostatin protein by various proteinases. FEBS Lett, 486, 247-51.   DOI
75 Wojtowicz-praga S, Low J, Marshall J, et al (1996). Phase I trial of a novel matrix metalloproteinase inhibitor batimastat(BB-94) in patients with advanced cancer. Invest New Drugs, 14, 193-202.
76 Murphy G, Reynolds J J (1993). Extracellular matrix degradation: in connective tissue and its heritable disorders. Royce P M,Steinman B, editors. New York, Wiley-Liss 287-316.